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 Abstract- The massive growth of the wireless communication 
technology, especially in 5G and beyond, which is used for the 
efficient and channel modelling for estimation and prediction. 
The Channel Modeling, works on the statistical approach, it is 
hard to analyse the dynamic and complex behavior of the 
channel modelling. Millimeter wave (mmwave) channel 
modelling operates from the 30-300 GHZ in high bandwidth, 
highly efficient and high data rate as well as robustness. 
However, mmWave signals face challenges such as low SNR 
(signal to noise ratio), Impact on Near and Far field model, 
robustness issue, Lack of signal detection, inefficient training. To 
address these challenges, using score based generative model for 
robustness in channel estimation, MIMO-MRC (Multiple input 
and multiple output Maximal ratio combining) for High SNR and 
federated based learning is used for training, using Coordinated 
multiple point (CoMP) Model for signal detection, Fast alignment 
algorithm provides far and near field model to execute accurate 
value. The focus on the channel estimation and prediction, 
mmwave channel model use of machine learning techniques. 
Mmwave channel modelling is used to estimate and predict the 
channel. The propose paper offers some advantages to handling 
the issues in the communication system such as optimising 
beamforming, Estimation of CSI (Channel State Information). 
The proposed model result as Robust, scalability and highly 
efficient for future wireless network technology when combining 
these techniques with data. The results shows that our proposed 
method outperforms significantly mmwave channel prediction 
and estimation used metrics as BER (Bit Error Rate), Spectral 
efficiency, Transmission rate, spatial correlation, MSE (Mean 
Squared Error), SNR.  

Index Terms- High SNR, Near and Far field Model, MIMO-MRC, 
Coordinated multiple point (CoMP), Fast alignment algorithm, 
Channel estimation and prediction. 
                       

I. INTRODUCTION 
    The Mmwave in Multiple-input Multiple-output that led to 
the fifth-generation mobile communication systems by 

analysing the massive connectivity high data rate and ultra 
reliable low-latency communications [1]. The massive 
mmwave Multiple-input Multiple-output (MIMO) technology 
can used to increase data transmission rate with higher 
bandwidth and higher spectral efficiency, emerging as an 
essential technology for the sixth generation (6G) wireless 
communication [2]. ML (Machine learning) is used to improve 
accuracy of detection in physical-layer and new and better 
waveforms, and reduce complexity of specific parts of 
receiver algorithms [3]. Reconfigurable intelligent surface 
(RIS) is an important technique, from Multiple-input Multiple-
output (MIMO), mmwave, and provide communications, for 
future networks (6G) [4]. A Deep unfolding Network is 
proposed to reduce the computational time in a practical 
application and used to improve the robustness The 
constructed deep neural network can be reconstructed that 
executes faster and more accurate in the interpretable structure 
of few layers than the iterative algorithm [5]. The probability 
of transition on Angle-of-Arrival (AoA) and Angle-of-
Departure (AoD), a semi-exhaustive search algorithm for 
beam alignment [6]. mmWave communications are considered 
a high-potential solution that can improve available bandwidth 
and spectral efficiency. The frequency band for mmwave 
ranges from 30 GHz to 300 GHz and supports communication 
with high transmission rates and ultra-low delay [7]. The 
simple channel estimation techniques, like LS estimators, 
which may not execute high-quality channel estimates and low 
SNR [8]. ML techniques such as Neural Networks (NNs), is 
used to acquire statistical channel models that tackle the 
challenges of conventional channel modeling systems [9]. 
Channel Estimation (CE) is an essential process in modern 
wireless communication systems, enabling accurate signal 
detection and robust system optimization [10]. The traditional 
LLMSE and LS estimation methods are compared to the DNN 
estimator performance in terms of Bit error rate versus SNR 
and it can be estimated as channel errors [11]. Channel 
estimation schemes that accomplish high level accuracy 
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compared to MMSE estimator, while also reducing 
complexity and enhanced robustness to the imperfect 
knowledge of channel statistics [12]. The adaptive filtering 
that provides advancement in mmwave communication 
technologies and used to enhances the estimation channel 
performance [13]. The Deep learning-based estimation have 
been utilizing to reduces the issues and increase the traditional 
algorithm performance such as signal detection channel 
estimation and prediction and end-to-end transceiver design 
[14]. The high directivity is achieved in massive MIMO 
systems, which often require the need for highlighting the 
efficient implementation and more complex signal processing 
techniques [15]. Loss of valuable information about the 
estimated channel inevitably impacts the estimation 
performance, particularly at lower SNR regions where the 
channel noise is usually severe [16]. For Far-field channel 
estimation, channel sparsity is considered as angle domain, 
where signals are used to pointed in a particular direction. 
Whereas, near-field channel estimation considers aperture 
arrays will experience spherical wavefronts and the channel 
sparsity is in polar domain [17]. The RIS channel estimation 
as a maximum likelihood (ML) problem and uses an 
expectation maximization (EM) algorithm for accurate 
estimation with reduced training overhead, demonstrating 
significant improvements over current approaches [18]. The 
antenna array can be categorized into many sub-arrays, and 
that can be estimated independently and is used to reduce the 
complexity. The angles of arrival/departure (AoAs/AoDs) are 
based on gradient method. The results show off-grid errors. 
[19]. CSI is important for ensuring reliable signal transmission 
and reception MIMO systems and is primarily used to design 
the efficient beamforming techniques [20]. To overcome from 
these challenges, the proposed model presents MIMO-MRC 
model, Fast alignment algorithm, federated training, DE-MS 
QP and CoMP model. 

A. Motivation & Objectives  

The present issues are Low performance of SNR, Impact 
on Near field and Far field model, Challenging in Robustness, 
decreasing training, Lack of signal detection 
 Low performance of SNR: However, the existing 

method to improve the SNR (signal Noise Ratio). The low 
SNR will result high noise than the signal. 

 Impact on Near and Far field Model: Nevertheless, the 
3D localization in RIS panel is feasible with near field 
model and not feasible with far field model. It is essential 
RIS single panel is effective with Far Field model also. 

 Challenging in Robustness: However, there is no 
robustness to estimate the channel in the multi sub band 
quasi perfect and data embedded (DE-MS QP) techniques. 
The multi sub band quasi perfect and data embedded 
model which produces compressed sensing and 
communication and is used to estimate the channel but 
need to improve robustness 

 Decreasing Training: The channel prediction, this 
research paper needs to train the model in advance. 
However, the training is low. 

 Lack of Signal Detection: The signal detection between 
transmitter and receiver is important for channel 
estimation and prediction. However, SC attention 
Network are used to estimate the channel under noise 
condition but it has to improve the signal detection 

 The primary objective of this research is mmwave 
channel estimation and prediction based on machine learning 
particular objectives of this study are as follows,  

 To Develop High SNR where the noise is stronger than 
the signal. 

 To Utilize novel methods, for training the federated 
learning method are executed 

 To develop novel method for near and far field model get 
feasible with RIS technology. 

 To Apply novel methods, provides Robustness for 
channel estimation and prediction  

 To Design the model for signal detection between 
transmitter and receiver 

B. Research Contribution  

The highlights of this research work are illustrated below; 

 To improve High SNR, use the Minimally tuned (MIMO-
MRC) method. 

 To increase training the federated training method is used 
 Near and Far field model executed RIS panel where as, 

the Fast Alignment Algorithm introduced 
 To Improve robustness of channel estimation, Multi sub 

band quasi perfect and data embedded (DE-MS QP) 
model is introduced. 

 To detect the signal between transmitter and receiver, the 
Coordinated multiple point (CoMP) model is introduced 
 

C. Paper organization  
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 The remainder of this research as follows: Provides an 
explanation of Section II of a survey of previous work. In 
section III, states that main issue with the current methods. In 
section IV, describes the system model. Then in Section V 
presents study approach for suggested model, appropriate 
diagrams, mathematical representations and pseudocode. In 
Section VI, the suggested and current methodology is 
compared and the experimental results are explained. The 
proposed method conclusion and future work is explained in 
Section VII. 
 

II. LITERATURE SURVEY 
 

 The Channel estimate is a crucial operation that 
significantly impacts end-to-end system performance used 
MIMO digital communication. The MIMO, Score based 
generative model used for Channel Estimation. To improve 
estimations given measurements of a signal, to determine the 
gradient of a distribution logarithm, a model is well trained. 
However, the Score based model have high inference 
complexity of posterior sampling with Langevin dynamics 
[21]. The Research paper examines how wobbling affects the 
Doppler effect of a mmwave wireless channel connecting 
ground node and hovering RW UAV. The results show that 
Amplitude and then Frequency of the ACF oscillation in 
mmwave link are affected by various RW UAV wobbling 
patterns. Nevertheless, tangential velocity will produce the 
Doppler effect and the chance of the Line Of Sight (LoS)link 
will drop when UAV at low altitude [22]. In this Research, 
they propose Deep Learning for channel estimation in MIMO 
system. Convolutional Neural network (CNN) is a Channel 
estimation process where input and output data which can be 
referred as H neural network (HNN). HNN which is used to 
generate the channel information of received signal and it also 
find connection between channel and received data. The 
Hopefield Neural network (HNN) algorithm gives channel 
estimation accurately. However, the large amount of data not 
collected for channel estimation in deep learning [23]. This 
research paper proposed orthogonal frequency-division 
multiplexing (OFDM) systems of compressed-sensing-assisted 
index modulation, termed as OFDM-CSIM, communicating 
over mmwave channels. The DNN achieve high throughput 
than the K-nearest algorithm. The Deep Neural Network 
(DNN) and Sparse Bayesian learning (SBL) provides better 
performance and accuracy. However, DNN and SBL decrease 
the complexity of channel estimation by using received signals 
as the feature set [24]. The support of the interior channel 
model simulator, which was developed for the generation of 
grid-wise channel data (Path Grid Data), a marked 

Additionally, developing grid-wise channel data (Path Grid 
Data) with a use of the internal channel model simulator (CP 
SQDSIM). The 3D model that cannot implement all scattering 
object during the measurement time [25]. The mmwave in 
multiple-input multiple output (MIMO), significantly reduces 
number of Radio frequency (RF) chains by using antenna 
array. The proposed GM-LAMP results better result on the 
channel estimation. However, the Gaussian mixture LAMP 
(GM-LAMP) is applied for improve channel estimation [26]. 
In MIMO system, the “GPODE” is a channel prediction 
method. The GPODE is a combination of Genetic 
programming (GP) with higher order differential equation 
(HODE). The GPODE method gives high accuracy in channel 
prediction. In GPODE method, which is used for channel 
prediction. For long term prediction, this research uses online 
and offline learning. However, Online training gives more 
accuracy than the offline training [27]. Federated Learning for 
channel estimation and CNN is trained on the dataset of the 
users. Federated Learning provides channel estimation 
performance as well as channel prediction performance. 
However, to develop compression-based techniques for 
training the data and provide model parameters to reduce the 
communication overhead [28]. These Research paper presents 
Deep Neural Network (DNN) which is used for prediction in 
Angle of Arrival, Angle of Departure. Dynamic window 
approach (DWA) which is used to estimate location 
information of user in User equipment (UE), input parameter 
is well trained “DNN” to optimise the prediction of 
“AAOA/AAOD” and “EAOA/EAOD”. There is still chance to 
improve the channel prediction performance using DNN 
(Deep Neural Network) with AOA and AOD [29]. The Deep 
learning compressed sensing (DLCS) is analysed to Estimate 
the channel. The Deep learning quantized phase (DLQP) 
hybrid precoder design method is used to develop channel 
estimation. A Deployment hybrid precoding neural network 
(DHPNN) are presented by changing approximation of ideal 
phase quantization and output as the DHPNN is analog 
precoding vector matrix. The proposed DLQP method, there is 
still chance to develop the Channel estimation and hybrid 
precoding design for wideband Multi-user mmWave massive 
MIMO transmission adopting deep learning [30]. DNN-based 
beam training (DBT) schemes are used to estimate the channel 
Based on the chances vector, the original DBT (ODBT) use 
DNN to identify beam combination that best matches 
mmWave channel longest channel path. However, ODBT and 
EDBT schemes improve DNN framework and preprocessing 
method for received signal before DNN processing [31]. 

This Research paper presents Low complexity Machine 
learning to reduce reference signal (RS) overhead, latency, 
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and power consumption. The result of the proposed system 
shows that prediction accuracy and spatial correlational. But 
there is chance to improve the mmwave beam prediction in 
machine learning based signal RS overhead [32]. In these 
research paper, proposed efficient channel estimation for the 
double-IRS aided Multi-user and the MIMO communication 
system to solve the cascaded CSI in both single double 
Reflection link. The performance provided joint training 
reflection design and channel estimation scheme with double 
IRS, compared to another benchmark scheme. However, the 
most generic Multi Assisted Multi-user communication 
system involves multiple paths of signal reflection, requiring 
additional intricately designed systems that use multi-IRS 
deployment, joint passive beamforming, and channel 
estimation [33]. The optimization of wireless channels and 
enhance the network as one, Reconfigurable intelligent surface 
(RIS) and assisted wireless system need precise CSI 
performance. In this paper, data-driven method that takes 
beam squint into account is generated for predicting RIS-

assisted multi-user mmwave complex MIMO systems use the 
wideband cascaded channels and the minimal training latency. 
Nevertheless, the standard Compressed Sensing algorithms 
still need a significant amount of pilot cost in order to confirm 
estimation accuracy [34]. RIS-assisted Orthogonal frequency 
division multiplexing (OFDM) and Multi-user multiple-input 
multiple-output (MIMO) communication systems determine 
cascaded channels with high dimensionality and advanced 
statistical analysis. The proposed Super-resolution 
convolutional neural network (SRCNN) and Denoising 
convolutional neural network (DnCNN) results good 
performance as well as accuracy of channel estimation. The 
intricate Gaussian distribution is not used by the cascaded 
channel. The ideal Minimum means square error (MMSE) 
estimator, have several integrals implementation, cannot be 
derived in this form [35].  TABLE 1 represents summary of 
existing  
work.

TABLE 1 

SUMMARY OF EXISTING WORKS 

References  Objectives  Algorithms or methods used  Limitations  
[21] A Score based generative model for posterior 

sampling and represents a new research direction 
for MIMO channel estimation. 
 

Score based Generative model for 
channel estimation 

• Limited by the Score based model 
have “high inference complexity” of 
posterior sampling with “Langevin 
dynamics”. 

[22] RW UAV wobbling patterns impact the amplitude 
and frequency of ACF oscillation in the mmwave 
RW UAV A2G link.  

Doppler Effect for the process of 
RW UAV. 

• The Line of Sight is dropped when 
UAV is low altitude. 

[23] HNN is used to analyse the channel information of 
received signal and also find the connection 
between channel and received signal. 

Hopefield Neural network (HNN) 
algorithm for channel estimation 
accurately. 

• The large amount of data is not 
collected yet for the channel 
estimation. 

[24] orthogonal frequency-division multiplexing 
(OFDM) communicating over mmwave and sparse 
Bayesian learning (SBL) for accurate channel state 
information. 

OFDM and SBL for channel 
estimation accurately. 

• Complexity is increased in OFDM 
and SBL model. 

[25] Developing grid-wise channel data (Path Grid Data) 
with a use of the internal channel model simulator. 

Q-D channel model framework for 
channel characteristics in mmwave. 

• The 3D model that cannot implement 
all scattering object during the 
measurement time. 

[26] Online and Offline training is used to generate the 
long-term prediction. 

GPODE method is used for training • Limited by Online training is more 
accurate than the offline training. 

 
[27] The model is developed for fast channel estimation 

using CNN 
Federated Learning for channel 
estimation and channel prediction 
performance. 

• Limited by the model reduce the 
communication overhead. 

[28] Design to reduce the energy consumption and 
provide high throughput 

ES-MPTCP, energy saving 
scheduling system 

• The model parameter is reducing the 
Communication overhead 

[29] To develop for high robustness channel estimation. Deep Neural Network (DNN) is used 
for prediction of channel. 

• There is still chance to develop the 
channel prediction performance 

[30] The model has better channel estimation Deep learning quantized phase • There is still chance to develop the 
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performance and has high spectral efficiency with 
low resolution of phase shifters. 

(DLQP) is used for better spectral 
efficiency  

channel estimation and hybrid 
precoding design 

[31] The model proposed to reduce the beam training 
overhead and improved signal coverage. 

ODBT, used to predict the beam 
combination. EDBT, used for 
additional beam training. 

• The model takes longer time for beam 
training. 

[32] The model provides low computational complexity 
and achieves beam prediction accuracy. 

Low complexity Machine learning 
design for reduction in RS overhead. 

• There is chance to improve the 
mmwave beam prediction in machine 
learning. 

[33] The effectives of the proposed channel estimation 
scheme and Joint training reflection design. 

Double-IRS aided multi-user MIMO 
system for maximize the training  

• The most generic Multi IRS involves 
multiple paths of signal reflection, 
requiring additional intricately 
designed systems. 

[34] The data driven approach for estimated the wide 
band channel estimation. 

Data-driven cascaded channel 
estimation for denoising neural 
network. 

• The compressed sensing algorithm 
needs an amount of pilot in order to 
confirm the estimation accuracy. 

[35] To improve the features and estimates the channel 
matrix by using pilot locations. 

Super-resolution convolutional 
neural network (SRCNN) used for 
accuracy of channel estimation. 
 

• The intricate Gaussian distribution is 
not used by the cascaded channel. 

  

III. PROBLEM STATEMENT 

 The numerous existing works and their associated 
responses are arranged in sequence of publication in this 
section. Furthermore, this study offers the research solutions 
for the mentioned issues. 

Specific research work & Issues: Authors in [36] 
research paper focuses their affordability and ease of use, 
Directional scanning sounding (DSS) and Virtual antenna 
array (VAA) sounding are two widely used models. DSS are 
mechanically movable omni directional antenna and VAA is a 
rotatable directional antenna. A new VAA framework based 
on directional antennas along with the related beamforming 
algorithm. Unlike the traditional VAA, it is a solution that can 
be used for frequency bands and polarizations. This research 
paper accomplishes High angular resolution for mmwave 
channel measurement without extending time need for 
measurement. The article [37] presents in RIS, the spherical 
wavefront propagation in the subTHz systems Near field. A 
calculated second-order Fresnel approximation of the Near-
field channel model propose Near-field channel estimation and 
localization (NF-JCEL) model. The orthogonal matching 
pursuit (OMP) model, channel attenuation coefficients, and 
the simple one-dimensional search can be used to estimate the 
UE distance. The NF-JCEL method can achieve higher 
resolution accuracy when compared to the traditional far field 
approach. Some of the problem detected in these papers are:  
 

• There are still chances to suppress the side lobes and 
increase the SNR . In Low SNR, the noise is stronger 
than Signal. 

 
• However, near and far-field models describe the 

behavior of electromagnetic fields at different 
distances from a radiating source, like an antenna. 
However, 3D localization using a single RIS panel is 
feasible with the near-field model but not with the 
far-field model. 

 
According to this study [38], Joint radar sensing and 

communication (JRC) operate in a both function such as 
Time-domain duplex (TDD) and Multi sub band quasi perfect 
(MS-QP-TDD) and MS-QP is introduced in target sensing, it 
will achieve target range and estimation of velocity. To use  
analog to digital convertor for the detection in sequence. By 
extended “MS-QP”, data embedded “MS-QP (DE-MS QP)” 
waveform is created, producing null frequency point on every 
sub band which is used for the data transmission. This 
research proposed “DE-MS-QP” the waveform gives 
interference free sensing and communication. The author 
proposes [39] Unmanned aerial vehicle (UAV) mmWave 
provides high data rate transmission in wireless network. The 
3D scattering space, includes 3D velocity, 3D antenna array, 
and 3D rotation. A UAV-to-Vehicle (U2V) and (ML) 
integrated mm Wave channel model is then proposed. The 
“back propagation” established neural network and Generative 
adversarial network (GAN), derived using enormous ray-
tracing (RT) simulations to training data set. The U2V 
mmWave channel is generated under 28 Ghz. The proposed 

mailto:phdservicesorg@gmail.com


 
 

                                     +91 94448 68310 

                                     phdservicesorg@gmail.com 
 

 

 
 

        

 
phdservices.org 

  
 

paper presents [40] RIS is a Reconfigurable Intelligent Surface, 
energy efficient option used in Wireless Communication 
Networks. Double-RIS aided MIMO have some challenges 
where large amount of antenna at base station. Skip-
connection attention (SC-attention) network that optimize self-
attention layer and improve the channel estimation extremely 
under noisy environment. Normalized mean square error 
(NMSE) accuracy performance can be successfully increased 
with SC-attention networks it provides an accurate channel 
Estimation. 
Several issues identified in this research include:  

 However, the multi sub band quasi perfect and data 
embedded “(DE-MS QP)” waveform design is no 
robust to estimate the channel. 

 However, ML networks in the framework need to 
trained in advance and also need to be pre-processed. 

 However Nevertheless, the SC attention network has 
to improve the Signal detection. Signal detection is 
important for the channel estimation and channel 
prediction 

Research solution:  To overcome from these issues, in this 
study proposes minimally tuned MIMO-MRC model exhibits 
asymptotic (high SNR) reductions in both uplink and 
downlink scenarios. The hybrid Fast alignment algorithm with 
Sub array partition framework and Hierarchical compressed 
sensing results Feasible in RIS panel in both near and Far field 
channel model and novelty as “Hierarchical Compressed 
Sensing with Spatial-Temporal Sub-Partitioning for Ultra-Fast 
mmWave Beam Alignment”. The hybrid Support vector 
machine with Score based generative model and bayes 
optimization to generate robustness in channel estimation and 

novelty as “SCOVEM: Score-Based Generative Model-
Enhanced Support Vector Machine with Bayesian 
Optimization for mmWave Fault Diagnosis”. Federated 
learning (FL) based framework for hybrid beamforming, 
where model trained and performed at the Base Station and 
collected gradients from the users. The Coordinated multiple 
point (CoMP) transmission is typically used in ultra-dense 
SCN for better the performance target sensing. Using “CoMP” 
and SCN to detect the received signal 
 

IV. PROPOSED METHODOLOGY 
 

The proposed methodology is used to estimate channel 
prediction and estimation using Machine Learning algorithm. 
The proposed method overall architecture is shown in (Fig. 1). 
Here the proposed methodology was detailed discussed below, 

 System Model 
 Data Pre processing 
  Near and Far field model 
  Federated Based Training 
  Machine Learning based Robust channel estimation 
  Score based Generative model 
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                                                                   Fig. 1 Overall Proposed Architecture  

 

A. System Model 

A 5G-capable wireless communication device can be used 
by end-user to access the network. UEs are equipped with 
mmWave transceiver and support beamforming capabilities to 
communicate with the base stations. It can be static or mobile, 
and their channel characteristics are influenced by factors such 
as mobility, location, and the environmental obstacles. A fixed 
infrastructure node that provides wireless connectivity to UEs 
within its coverage area. The BS operates in the mmWave 
frequency band (30–300 GHz) and then uses directional 
antennas to establish high-data-rate link. It supports only 
communication and long-range data transmission with low 
latency. The base station equipped with multiple antennas to 

enable continuous transmission and reception of multiple data 
stream. “MIMO-BS” enhances spectral efficiency, and also 
supports spatial multiplexing, and improves link reliability 
through diversity gains. It performs a critical role in capturing 
CSI and provide accurate channel estimation and prediction. 
The RIS deployed to enhance signal coverage, mitigate 
blockages, and used to improve channel conditions by 
intelligently reflecting incident signals toward intended UEs. 
It supports both near-field and far-field propagation models. In 
a Channel Environment, the propagation environment such as 
trees, buildings and user movement. The channel exhibits 
characteristics like high path loss, multi-path fading, Doppler 
effects, and spatial-temporal variations, which are analysed 
and captured through Ray-tracing simulation measurement. In 
mmwave channel modelling process represents the physical 
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propagation behaviour between the Base station (BS) and user 
equipment. 

              𝐻𝐻 = �𝑁𝑁𝑡𝑡𝑁𝑁𝑟𝑟
𝐿𝐿
∑ 𝛼𝛼𝑙𝑙𝑎𝑎𝑟𝑟(𝜃𝜃𝑙𝑙𝑟𝑟)𝑎𝑎𝑡𝑡𝐻𝐻(𝜃𝜃𝑙𝑙𝑡𝑡)𝐿𝐿
𝑖𝑖=1                         (1) 

 
Where 𝐻𝐻  is the “complex channel matrix”, 𝑁𝑁𝑡𝑡  and 𝑁𝑁𝑟𝑟 

denote the number of transmit and receiver antennas 
respectively, 𝐿𝐿 is the total number of propagation paths, 
𝛼𝛼1 represents the complex gain of the 𝑙𝑙𝑡𝑡ℎ  paths, 𝑎𝑎𝑡𝑡𝐻𝐻(𝜃𝜃𝑙𝑙𝑡𝑡)  and 
𝑎𝑎𝑟𝑟(𝜃𝜃𝑙𝑙𝑟𝑟)  are the transmit and receive array response vectors 
corresponding to the AOD and  AOA. For a uniform linear 
array (ULA) configuration, the transmit steering vector is 
given as 
𝐚𝐚𝑡𝑡(𝜃𝜃)

=
1

�𝑁𝑁𝑡𝑡
[1, 𝑒𝑒𝑗𝑗

2𝜋𝜋𝜋𝜋
𝜆𝜆 sin(𝜃𝜃), 𝑒𝑒𝑗𝑗

2𝜋𝜋𝜋𝜋
𝜆𝜆 2sin(𝜃𝜃), … , 𝑒𝑒𝑗𝑗

2𝜋𝜋𝜋𝜋
𝜆𝜆 (𝑁𝑁𝑡𝑡−1) sin(𝜃𝜃)]𝑇𝑇 (2) 

 
𝐚𝐚𝑡𝑡(𝜃𝜃) is a transmitting array steering vector, Where 𝜆𝜆 is 

the carrier wavelength and 𝑁𝑁𝑡𝑡  is the Number of transmit 
antenna.𝜃𝜃 is an angle of departure. 1

�𝑁𝑁𝑡𝑡
 is a normalization of 

power unit and 𝑒𝑒𝑗𝑗(⋅)  is a complex exponential representing 
phase. 𝑑𝑑 is the antenna spacing and 𝑇𝑇  is a Transpose. The 
complex gain 𝛼𝛼𝑙𝑙 is represented as 
                     𝛼𝛼𝑙𝑙 = �𝛽𝛽𝑙𝑙𝑒𝑒𝑗𝑗𝜙𝜙𝑙𝑙 ,𝛽𝛽𝑙𝑙 = 1

𝐶𝐶0(
𝑑𝑑𝑙𝑙
𝑑𝑑0

)𝛾𝛾
                              (3) 

 
Where 𝛽𝛽𝑙𝑙 denotes the power gain affected by path loss, 𝐶𝐶𝑜𝑜 

is a reference constant at distance 𝑑𝑑𝑜𝑜 = 1𝑚𝑚, 𝛾𝛾 is the path loss 
exponent, 𝑑𝑑𝑙𝑙 is the distance of the 𝑙𝑙𝑡𝑡ℎ path, and 𝜙𝜙𝑙𝑙 is the phase 
uniformly distributed in [0,2𝜋𝜋]. The received signal model is 
expressed as 
                       𝑦𝑦 = 𝐻𝐻𝐻𝐻 + 𝑛𝑛                                                   (4) 
 

Where 𝑦𝑦 denotes the received signal vector, 𝑥𝑥 represents 
the transmitted signal and 𝑛𝑛~∁ℕ(0,𝜎𝜎2𝐼𝐼) is the additive white 
Gaussian noise with variance 𝜎𝜎2.  𝐻𝐻 denotes channel effect. 
The effective post- processing SNR using MIMO-MRC 
combining is given as 

                  𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻�
2
𝑃𝑃𝑡𝑡

𝜎𝜎2
                                           (5) 

 
Where 𝐹𝐹 and 𝑤𝑤 denotes the transmit precoder and receive 

combiner respectively, and 𝑝𝑝𝑡𝑡  represents the transmitted 
power. 𝜎𝜎2 is a noise variance. For dynamic environments, the 
time varying mmwave channel due to mobility is modelled as 
 

                  H(𝑡𝑡) = � 𝛼𝛼𝑙𝑙𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝐷𝐷,𝑙𝑙𝑡𝑡a𝑟𝑟(𝜃𝜃𝑙𝑙𝑟𝑟)a𝑡𝑡𝐻𝐻(𝜃𝜃𝑙𝑙𝑡𝑡)
𝐿𝐿
𝑙𝑙=1              (6)                   

 
 
  Where 𝑓𝑓𝐷𝐷,𝑙𝑙 = 𝑣𝑣

𝜆𝜆
cos (𝜃𝜃𝑣𝑣 − 𝜃𝜃𝑙𝑙𝑟𝑟)  represents the doppler 

frequency shift for the 𝑙𝑙𝑡𝑡ℎpath, with 𝜈𝜈 being the velocity of the 
UE and 𝜃𝜃𝑣𝑣  being the direction of motion. Multiple rays are 
grouped into spatial clusters, and the overall clustered channel 
is defined as 

                    H = �
𝑁𝑁𝑡𝑡𝑁𝑁𝑟𝑟
𝑁𝑁𝑐𝑐𝑁𝑁𝑝𝑝

� 𝛼𝛼𝑐𝑐,𝑝𝑝a𝑟𝑟(𝜃𝜃𝑐𝑐,𝑝𝑝
𝑟𝑟 )a𝑡𝑡𝐻𝐻(𝜃𝜃𝑐𝑐,𝑝𝑝

𝑡𝑡 )𝑁𝑁𝑐𝑐
𝑐𝑐=1                (7)                    

 
  Where 𝑁𝑁𝑐𝑐 is the number of clusters, 𝑁𝑁𝑝𝑝 is the number of 
sub paths per cluster and 𝛼𝛼𝑐𝑐,𝑝𝑝 is the complex gain of the 𝑝𝑝𝑡𝑡ℎ 
sub path within the 𝑐𝑐𝑡𝑡ℎ cluster. For near and far field model 
conditions (Within Rayleigh distance), the wavefront 
curvature must be considered, and the channel becomes 

               H𝑁𝑁𝑁𝑁 = � 𝛼𝛼𝑙𝑙𝑒𝑒
−𝑗𝑗2𝜋𝜋𝜆𝜆 𝑟𝑟𝑚𝑚𝑚𝑚,𝑙𝑙

𝐿𝐿

𝑙𝑙=1
                                    (8) 

 
  Where 𝑟𝑟𝑚𝑚,𝑛𝑛,𝑙𝑙 denotes the propagation distance between the 
𝑛𝑛𝑡𝑡ℎ  transmit and 𝑚𝑚𝑡𝑡ℎ  receive antennas through 𝑙𝑙𝑡𝑡ℎ  path, 
capturing spherical wave propagation. When a Reconfigurable 
Intelligent Surface (RIS) assists the transmission, the channel 
can be expressed as 
             
                 H𝑅𝑅𝑅𝑅𝑅𝑅 = H𝐵𝐵𝐵𝐵ΦH𝑅𝑅𝑅𝑅                                                          (9) 
  

Where H𝐵𝐵𝐵𝐵  represents the BS to RIS channel,  H𝑅𝑅𝑅𝑅 
denotes the RIS-to-UE channel and Φ =
diag((𝑒𝑒𝑗𝑗𝜙𝜙1 , 𝑒𝑒𝑗𝑗𝜙𝜙2 , … , 𝑒𝑒𝑗𝑗𝜙𝜙𝑁𝑁𝑅𝑅) 
is the diagonal matrix of adjustable reflection phase shifts for 
the 𝑁𝑁𝑅𝑅  RIS elements. The composite effective end-to-end 
channel is therefore 
 
                  Heff = H𝐵𝐵𝐵𝐵 + H𝐵𝐵𝐵𝐵ΦH𝑅𝑅𝑅𝑅                                     (10)                      
 

Where 𝐻𝐻𝐵𝐵𝐵𝐵  is the direct BS-UE channel. The degree of 
spatial correlation between antenna elements is given by 
 

                𝜌𝜌𝑖𝑖𝑖𝑖 =
𝔼𝔼[h𝑖𝑖h𝑗𝑗

∗]

�𝔼𝔼[∣h𝑖𝑖∣2]𝔼𝔼[∣h𝑗𝑗∣2]
                                                 

(11) 
 
    [h𝑖𝑖h𝑗𝑗∗] are the complex channel gains. �𝔼𝔼[∣ h𝑖𝑖 ∣2]𝔼𝔼[∣ h𝑗𝑗 ∣2] 
normalizes the correlation, so that 𝜌𝜌𝑖𝑖𝑖𝑖    is bounded between the 
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0 and 1. 𝔼𝔼  is the average random variable. Where  𝜌𝜌𝑖𝑖𝑖𝑖  
measures the correlation between channel vectors 
corresponding to antenna 𝑖𝑖 and 𝑗𝑗. The estimation performance 
of the channel is evaluated through “Mean squared error 
(MSE)” defined as 
             
               MSE = 𝔼𝔼[∥ H − H� ∥𝐹𝐹2]                                       (12) 
                          

Where 𝐇𝐇�  is the estimated channel matrix obtained by the 
machine learning model. The 𝐹𝐹is a Frobenius norm, which is 
like the Euclidean norm for matrices. The spectral efficiency 
is defined by 
                 𝜂𝜂 = log 2 det (I𝑁𝑁𝑟𝑟 + 𝑃𝑃𝑡𝑡

𝑁𝑁𝑡𝑡𝜎𝜎2
HH𝐻𝐻)                        (13)                   

 
The 𝜂𝜂  is a spectral efficiency and 𝐻𝐻𝐻𝐻   is a Hermitian 

transpose of 𝐻𝐻 . 𝐼𝐼 is an identity matrix of size 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑡𝑡 . 𝑃𝑃𝑡𝑡  is 
the total transmitting power. det (I𝑁𝑁𝑟𝑟 + 𝑃𝑃𝑡𝑡

𝑁𝑁𝑡𝑡𝜎𝜎2
HH𝐻𝐻)   is the 

determinant of a matrix. The bit error rate (BER) 
corresponding to modulation order M and SNR 𝛾𝛾  can be 
estimated by 
 

               BER = 𝑄𝑄(�2𝛾𝛾sin 2(𝜋𝜋
𝑀𝑀

))                                    (14)                 

 
Where 𝑄𝑄  denotes the Gaussian Q-function. 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋

𝑀𝑀
) is a 

minimum distance between the points. Through this 
comprehensive channel model, the mmwave environment is 
mathematically, enabling accurate estimation and prediction 
using the subsequent machine learning based methods such as 
MIMO-MRC preprocessing, HCSSP channel recovery, 
federated learning-based training and SCOVEM based 
prediction. 
B. Data Preprocessing 
 Data pre-processing is used to extract the data and remove 
the noise. The important performance of pre-processing is 
Reducing noise, enabling feature extraction, improving 
efficiency and enhancing accuracy. By using high SNR, it will 
reduce the noise MIMO-MRC (Multiple input and multiple 
output Maximal ratio combining) model exhibits asymptotic 
(high SNR). Feature Engineering makes the raw data into 
more interpretable data. To reduce the noise, the clustering 
algorithm are used to group nearby points that likely belong to 
the same object. Filtering techniques, such as thresholding or 
statistical outlier removal, are also applied to remove noise 
and improve the quality of the point cloud. In Fig. 2 Data 
preprocessing model is shown Narrowband MIMO baseband 
receives model (matrix form) 

RAW DATA

NOISE REDUCTION
USING MIMO-MRC MODEL

DATA PREPROCESSING
REDUCE NOISE, ENABLES FEATURE 

EXTRACTION, IMPROVES ACCURACY

FEATURE ENGINEERING 
TRANSFORMS RAW DATA 

INTO INTERPRETABLE 
FEATURES

FILTERING TECHNIQUES 
(THRESHOLDING /OUTLIER 

REMOVAL)

NARROWBAND MIMO 
BASEBAND RECEIVE 

MODEL

REFINED DATA 
INTERPRETABLE 

FEATURES 

 
                            Fig. 2 Data preprocessing 

                    𝑦𝑦 = 𝐻𝐻𝐻𝐻 + 𝑛𝑛                                                     (15) 

   𝑦𝑦 ∈ ℂ𝑁𝑁  is the received vector, 𝐻𝐻 ∈ ℂ𝑝𝑝𝑁𝑁 is the MIMO channel 
matrix, 𝑥𝑥 ∈ ℂ𝑁𝑁 , the transmitted symbol vector, and 
𝑛𝑛~𝒞𝒞𝒞𝒞(0,𝜎𝜎𝑛𝑛2 𝐼𝐼)  AWGN. MIMO-MRC focuses on single 
stream transmission or combining to maximize the post 
combiner SNR. The single stream transmits using beam 
forming vector 𝑓𝑓. 

                    𝑥𝑥 = 𝑓𝑓𝑓𝑓,     �|𝑓𝑓|�2 = 1                                        (16) 
  scalar symbols 𝑠𝑠 is pre coded by unit norm beam former 
𝑓𝑓 ∈ 𝒞𝒞𝑁𝑁. Linear combiner output (scalar observation) 

                   𝑧𝑧 = 𝑤𝑤𝐻𝐻𝑦𝑦 = 𝑤𝑤𝐻𝐻𝐻𝐻𝑓𝑓𝑠𝑠 + 𝑤𝑤𝐻𝐻 𝑛𝑛                               
(17)                

 
  The 𝑤𝑤  is a combine vector and 𝑦𝑦  is received signal 
vector. 𝑓𝑓𝑠𝑠  , transmit beamforming and 𝑛𝑛  is the noise vector.  
𝑤𝑤𝐻𝐻  𝑛𝑛 is the desired signal after combing with 𝑤𝑤  , affecting 
SNR and 𝑤𝑤𝐻𝐻𝐻𝐻𝑓𝑓𝑠𝑠  is the desired signal after combining with 
𝑤𝑤  .Receive combiner  𝑤𝑤 ∈ 𝐶𝐶𝑁𝑁  produces scalar 𝑧𝑧 . MRC 
(Maximum Ratio combining) chooses 𝑤𝑤 to maximize SNR. 
MRC optimal combiner for known channel. 

                     𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑘𝑘𝐻𝐻𝐻𝐻                                        (18) 
  Where 𝑘𝑘  is a scalar normalization. In single stream 
transmitted on 𝐹𝐹,  the receive MRC weights match the 
effective receive steering vector HF. The post combiner SNR 
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                      𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻�
2
𝑃𝑃𝑡𝑡

𝜎𝜎𝑛𝑛2�|𝑊𝑊|�2
                                            (19)                      

  SNR after linear combiner 𝑤𝑤  with transmit power 𝑝𝑝𝑡𝑡 . 
The MRC maximum SNR (choose 𝑤𝑤 = 𝐻𝐻𝐻𝐻) 

                    𝑆𝑆𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐻𝐻𝐻𝐻 𝑃𝑃𝑡𝑡
𝜎𝜎𝑛𝑛2

                                                    
(20) 
  The numerator becomes squared norm of effective receive 
vector; this realizes maximal SNR for that 𝑓𝑓. Optimal transmit 
beamformer under full CSI. It is a “right singular vector” (𝑣𝑣1)   
corresponding to largest singular value of 𝐻𝐻. MRC SNR with 
SVD beamforming (closed form) 

               𝑆𝑆𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎1

2 𝑃𝑃𝑡𝑡
𝜎𝜎𝑛𝑛2

                                                    (21) 
𝜎𝜎1  is the largest singular value of 𝐻𝐻 . This shows 

equivalence to strongest spatial eigenmode. Effective array 
again (diversity+ beamforming) 
 
                𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �|𝐻𝐻𝐻𝐻|�2 ∑ |ℎ𝑖𝑖𝐻𝐻𝑓𝑓|2𝑁𝑁𝑟𝑟

𝑖𝑖=1                                      
(22) 
 
     ℎ𝑖𝑖𝐻𝐻  is the 𝑖𝑖 th receive antenna row the expression 
decomposes array gain into per receiver contributions. 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   
is the array gain and 𝑁𝑁𝑟𝑟  is the number of received antenna. 
The SNR under independent Rayleigh per antenna channels 
(MRC with equal power per transmit antenna). If 𝐻𝐻𝐻𝐻  has 
elements 𝐶𝐶𝐶𝐶(0,𝜎𝜎𝑔𝑔2) then,  

               𝑆𝑆𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑡𝑡
𝜎𝜎𝑛𝑛2
∑ |𝑔𝑔𝑖𝑖|2
𝑁𝑁𝑡𝑡
𝑖𝑖=1                                           

(23) 
  MRC sums per branch SNR; for Rayleigh fading each 
|𝑔𝑔𝑖𝑖|2  is exponential giving gamma distribution of the sum 
diversity order. 𝑁𝑁𝑡𝑡 is the number of transmitted antennas. 

              𝛾𝛾 = 𝑝𝑝𝑡𝑡𝜎𝜎𝑔𝑔2/𝜎𝜎𝑛𝑛2                                                             
(24) 

     𝛾𝛾   represents the ratio of received “SNR” power. 𝜎𝜎𝑔𝑔2 
denotes average channel power and 𝜎𝜎𝑛𝑛2  .The outage 
probability for threshold 𝛾𝛾0 

        𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝛾𝛾0) = Pr{𝛾𝛾 < 𝛾𝛾0} = 1 − 𝑒𝑒 ∑ (2𝑘𝑘) � 1
4(1+𝛾𝛾)

�𝑁𝑁𝑡𝑡−1
𝑘𝑘=0    (25) 

 
    Pr{𝛾𝛾 < 𝛾𝛾0}  denotes formal definition of outage that has 

chance SNR is less than the required 𝛾𝛾0 , minimum SNR 
required to achieve the target performance. 

∑ (2𝑘𝑘) � 1
4(1+𝛾𝛾)

�𝑁𝑁𝑡𝑡−1
𝑘𝑘=0  represents the cumulative effective 

order. The expression may be given via MGF integration; 
above is representative closed form (can be simplified or 
expressed via confluent hypergeometric functions). It shows 
rapid BER improvement with 𝑁𝑁𝑟𝑟 .High SNR (𝔥𝔥)  asymptotic 
SER slope (diversity order) 

           𝑆𝑆𝑆𝑆𝑆𝑆(𝛾𝛾)𝛼𝛼𝛾𝛾𝑛𝑛   as 𝛾𝛾 ⟶ 𝔥𝔥                                            (26) 

  MRC achieves full diversity 𝑁𝑁𝑟𝑟  error decays with SNR 
exponent equal to number of combining branches. 𝛾𝛾𝑛𝑛  denotes 
normalized SNR term. Effective SNR after preprocessing 
whitening normalization whiten input covariances 𝑅𝑅𝑦𝑦 =
𝔼𝔼[𝑦𝑦𝑦𝑦𝐻𝐻] 
            𝑦𝑦 = 𝑅𝑅𝑦𝑦            𝐻𝐻 = 𝑅𝑅𝑦𝑦1\2 𝐻𝐻                                   (27) 
 
     𝑅𝑅𝑦𝑦 is a positive semi definite Hermitian Matrix. Whitening 
reduces colored noise effects or spatial interreference; 
subsequent MRC on 𝐻𝐻  yields corrected SNR. Preprocessing 
increases effective SNR when interference / noise coloring 
exists. The principal component Analysis (PCA) denoising 
(rank -r truncation) 
 
              𝑌𝑌𝑟𝑟 = 𝑈𝑈𝑟𝑟𝑈𝑈𝑟𝑟𝐻𝐻𝑌𝑌                             (28) 
 
  Where 𝑌𝑌  is received training snapshot matrix, 𝑈𝑈𝑟𝑟  
first 𝑟𝑟 principal eigenvectors; 𝑌𝑌𝑟𝑟  is the projected or reduced -
rank version of the received signal. 𝑈𝑈𝑟𝑟𝑈𝑈𝑟𝑟𝐻𝐻  is a “projection 
matrix” onto subspace spanned by the columns of 
𝑈𝑈𝑟𝑟 ., improving SNR before MRC. The MMSE prefilter that 
maximizes SNR in presence of Interference 𝑅𝑅𝑖𝑖 
 
              𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑐𝑐�𝐻𝐻𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑅𝑅𝑖𝑖 + 𝜎𝜎𝑛𝑛2𝐼𝐼 �

−1𝐻𝐻𝑓𝑓            (29) 
 
     𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  filter matrix, to apply at the receiver and 𝑐𝑐 denotes 
the scaling constant. 𝐻𝐻𝑓𝑓  is the “channel matrix” of the desired 
signal. Where 𝑅𝑅𝑖𝑖 denotes the interference covariance matrix. 𝐼𝐼 
is identity matrix. The MMSE combiner balances signal 
enhancement and interference/noise suppression. If 
interference negligible MMSE=MRC. The channel estimation 
model with estimation error 
 
                𝐷𝐷 = 𝐻𝐻 + 𝐸𝐸,   𝔼𝔼��|𝐸𝐸|�𝐹𝐹� = 𝜎𝜎𝑒𝑒2                                          
(30) 
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      𝐷𝐷 is the estimated channel matrix and ��|𝐸𝐸|�𝐹𝐹� is a 
frobenius norm squared.   𝐸𝐸  models estimation error (MSE 
𝜎𝜎𝑒𝑒2). Use 𝑌𝑌 for beamforming/combing; imperfect CSI reduces 
MRC gain. SNR degradation due to channel estimation error 
 

                𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 ≈
�|𝑌𝑌𝑌𝑌|�

2
𝑃𝑃𝑡𝑡

𝜎𝜎𝑛𝑛2+𝑃𝑃𝑡𝑡�|𝐸𝐸𝐸𝐸|�
2                                         (31) 

 
  The estimation error acts like additional signal dependent 
noise; the denominator increases by residual beamforming 
leakage power 𝑃𝑃𝑡𝑡�|𝐸𝐸𝐸𝐸|�2 . The piolet length 𝑇𝑇𝑝𝑝  vs estimation 
MSE (LS estimator, orthogonal pilots) 
 
                 𝜎𝜎𝜀𝜀2 = 𝜎𝜎𝑛𝑛2

𝑃𝑃𝑝𝑝𝑇𝑇𝑃𝑃
                                                           (32) 

  The pilot power 𝑃𝑃𝑝𝑝  and 𝑇𝑇𝑝𝑝  orthogonal pilot symbols, LS 
channel MSE decreases inversely with training energy; shows 
trade-off between piolet overhead and CSI quality (hence 
MRC effectiveness). The effective SNR gain from averaging 
(data preprocessing); averaging L independent snapshots 
 
                     𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿𝜏𝜏                                                      (33) 
 
  Temporal averaging of independent noise realizations 
improves effective SNR by factor L;  𝐿𝐿𝜏𝜏 is a constant represent 
the mean delay. used in preprocessing before combining. The 
spatial correlational model  
                     𝐻𝐻 = 𝑅𝑅𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡                                                  (34) 
 
  The 𝑅𝑅𝑟𝑟 represents the received correlation matrix and 𝑅𝑅𝑡𝑡 , 
transmit correlation Matrix. ℎ𝑖𝑖𝑖𝑖  denotes Rayleigh channel 
fading matrix. The post MRC mean and variance 
  
    𝔼𝔼[𝛾𝛾] = 𝑃𝑃𝑡𝑡

𝜎𝜎𝑛𝑛2
𝑡𝑡𝑡𝑡 �𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒� ,𝑉𝑉𝑉𝑉𝑉𝑉(𝛾𝛾) = 𝑃𝑃𝑡𝑡

2

𝜎𝜎𝑛𝑛4
 𝑡𝑡𝑡𝑡(𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒2 )                      

(35) 
 
  The practical quantized combiner/ phase shifter model 
(finite resolution 
 
      𝑤𝑤𝑞𝑞 = 𝑄𝑄𝐵𝐵(𝑤𝑤),𝑄𝑄𝐵𝐵(𝑒𝑒𝑗𝑗𝑗𝑗) = 𝑒𝑒𝑖𝑖                                                    
(36) 
 
     𝑤𝑤  is the original beamforming /precoding vector. 𝑤𝑤𝑞𝑞 is the 
quantized version applying 𝐵𝐵  bit quantization. The 
quantization function 𝑄𝑄𝐵𝐵(𝑒𝑒𝑗𝑗𝑗𝑗) represents bit phase quantizer 
on analog combining; 𝑒𝑒𝑖𝑖is the quantized phase value and 𝑒𝑒𝑗𝑗𝑗𝑗 is 

a complex number on the unit circle. Finite resolution reduces 
array gain include as multiplicative loss factor in SNR 
expressions. Pseudocode for MIMO-MRC model is presented 
in Algorithm 1 
Algorithm 1: Multiple input and multiple output Maximal 
ratio combining (MIMO-MRC) Model  

1. Initialize system parameters ( 𝑇𝑇𝑥𝑥 ,𝑅𝑅𝑥𝑥,𝑅𝑅𝑅𝑅𝑅𝑅,𝜎𝜎2,𝑃𝑃𝑡𝑡 ,𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑟𝑟) 
2. Acquire received baseband signal vector 𝑦𝑦 = 𝐻𝐻𝐻𝐻 + 𝑛𝑛  
3. Apply MIMO-MRC combining to maximize post- 

combiner SNR 
4. Compute optimal combiner 𝑤𝑤 = 𝐻𝐻𝐻𝐻

�|𝐻𝐻|�
 

5. Evaluate post combiner 𝑆𝑆𝑆𝑆𝑆𝑆 = (|𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻|2)/(𝑤𝑤𝐻𝐻𝑤𝑤 𝜎𝜎2) 
6. Perform SVD of channel matrix 𝐻𝐻 = 𝑈𝑈𝑉𝑉𝐻𝐻  to obtain 

dominant eigenmode  
7. Select transmit beamformer 𝑓𝑓 = 𝑉𝑉1  corresponding to 

largest singular value 
8. Compute effective array gain 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = |ℎ𝑖𝑖|2 
9. Estimate branch SNRs under Rayleigh fading and 

compute diversity gain 
10. Calculate outage probability 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑦𝑦𝑡𝑡ℎ) 
11. Normalize received signal using whitening matrix 𝑅𝑅 =

𝑛𝑛 to remove the noise. 
12. Apply PCA denoising:𝑌𝑌𝑟𝑟 = 𝑈𝑈𝑟𝑟𝑌𝑌 
13. Compute MMSE filter 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
14. Estimate channel 𝐻𝐻 = 𝐻𝐻 + ∆𝐻𝐻 and compute estimation 

error 𝑀𝑀𝑀𝑀𝑀𝑀 = �|∆𝐻𝐻|�2 
15. Evaluate SNR degradation due to estimation error 
16. Optimize pilot length 𝜏𝜏𝑝𝑝  and 𝑃𝑃𝑝𝑝  to minimise channel 

MSE. 
17. Apply temporal averaging over 𝐿𝐿 snapshots to enhance 

𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒  
18. Compute spatial correlation metrics 𝑅𝑅𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑡𝑡𝑡𝑡 
19. Quantize beamforming phase: 𝜃𝜃𝑞𝑞 = 𝑄𝑄(𝜃𝜃)  with bit 

resolution 
20. Output pre-processed data 𝑌𝑌  clean, enhanced channel 

matrix ℋ and effective SNR.  
 
 
 
C. Near and far field model 

The novelty “Hierarchical Compressed Sensing with 
Spatio-Temporal Sub-Partitioning for Ultra-Fast 
mmWave Beam Alignment “is a combine of fast alignment, 
sub partition framework and hierarchical compressed sensing 
for providing “near and far field model” accurately. Wireless 
communication, the “Near-field and Far-field” models 
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describe different region of an electromagnetic field 
propagating from an antenna. The far-field is a region where 
the radiation pattern is stable and the power decays as inverse 
square of the distance. The near-field, closer to antenna, is 
more complex, with both reactive and radiative components. 
The proposed methodology using a Fast alignment and sub-
partition framework and hierarchical compressed sensing 
is designed to address accuracy in RIS plane of both near and 
far field model. The Fast alignment algorithm works as coarse 
alignment which quickly identify the primary near-field 
regions of interest. By doing this, the system avoids spending 
time on areas with very low signal strength and can access RIS 
technology for far and near field model. In Sub partition 
framework, the measurement area is divided into smaller, 
more manageable sub-regions. To combine of this technique 
the novelty as “Hierarchical Compressed Sensing with Spatio-
Temporal Sub-Partitioning for Ultra-Fast mmWave Beam 
Alignment” The sub-partitions can be dynamically adjusted 
based on the initial coarse alignment results, capturing the 
features of both near and far field model in RIS phase shifts. 
Hierarchical Compresses technique builds on efficiency 
gained from the sub-partition framework by applying 
compressed sensing (CS) in a hierarchical manner. “. In fig. 3 
the “Near and Far field model” is executed. The hybrid of the 
fast alignment algorithm and sub partition framework and 
hierarchical compressed sensing is used to get feasible in RIS 
technology in both “Near and Far field model”. The Fresnel 
(Rayleigh) distance (near and far boundary 

           𝑑𝑑𝐹𝐹 = 2𝐷𝐷2

⋋
                                                   (37) 

 Where distance 𝑑𝑑𝐹𝐹 separates near and far field model for an 
antenna of maximum dimension 𝐷𝐷 at wavelength ⋋. For 𝑟𝑟 ≪
𝑑𝑑𝐹𝐹 near field effects matter; for 𝑟𝑟 ≫ 𝑑𝑑𝐹𝐹 planar approximation 
holds. Friis path-loss (free space), 

              𝑟𝑟 = 𝑝𝑝𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟 �
⋋
4𝜋𝜋𝜋𝜋

�
2
                                                     

(38) 

   𝑝𝑝𝑟𝑟 is a received power at distance 𝑟𝑟 from transmit power 𝑝𝑝𝑡𝑡  
and gains 𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑟𝑟 . Use as a baseline for distance dependent 
attenuation. Where 𝑝𝑝𝑡𝑡 , 𝑝𝑝𝑟𝑟   is a power and  𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑟𝑟   is an antenna 
gains, 𝑟𝑟  (distance). General narrowband MIMO baseband 
channel (Multipath) 

                  𝐻𝐻 = ∑ 𝛼𝛼𝑙𝑙𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑒𝑒
𝑇𝑇𝑇𝑇𝐿𝐿

𝑙𝑙=1  𝑎𝑎𝑟𝑟(𝜃𝜃𝑙𝑙 , 𝑟𝑟𝑙𝑙)𝑎𝑎𝑡𝑡𝐻𝐻(𝜑𝜑𝑙𝑙 , 𝑟𝑟𝑙𝑙)             
(39) 

  Where, sum of 𝐿𝐿  discrete paths with complex gain 𝛼𝛼𝑙𝑙 , 
delay 𝑇𝑇𝑙𝑙 , receive/transmit array responses 𝑎𝑎𝑟𝑟 , 𝑎𝑎𝑡𝑡𝐻𝐻  that depend 
on both direction and range 𝑟𝑟𝑙𝑙. Far field (planar wave) ULA 
steering vector (transmit) 

                    𝑎𝑎𝑡𝑡𝐹𝐹𝐹𝐹(𝜑𝜑) = 1
�𝑁𝑁𝑡𝑡

                                                    (40) 

   The 𝑎𝑎𝑡𝑡𝐹𝐹𝐹𝐹  is a transmit array response for far field (FF) 
transmission at angle of departure 𝜑𝜑 .Planar wave steering for 
ULA with element spacing 𝑑𝑑.  𝑁𝑁𝑡𝑡  is a number of transmit 
antennas in the array.  

                  𝑎𝑎𝑡𝑡𝑁𝑁𝑁𝑁(𝜑𝜑, 𝑟𝑟) = 1
�𝑁𝑁𝑡𝑡

[𝑒𝑒]𝑇𝑇                                                        

(41) 
  The 𝑎𝑎𝑡𝑡𝑁𝑁𝑁𝑁(𝜑𝜑, 𝑟𝑟)  is a “near field” transmit array response 
vector. Where 𝑟𝑟  is a propagation distance and [𝑒𝑒]𝑇𝑇 is a phase 
vector. The account for per element distance dependent phase 
(spherical curvature). The second order Fresnel approximation 
(Useful intermediate) 

                 △𝑛𝑛≈ 𝑟𝑟 − 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛2

2𝑟𝑟
                                                  (42) 

  Taylor expansion of △𝑛𝑛  valid in Fresnel region; 𝑥𝑥𝑛𝑛  is a 
position of the 𝑛𝑛𝑡𝑡ℎ  antenna element. First two terms give 
planar plus quadratic correction capturing curvature. Useful in 
near mid field modelling. 

                𝐻𝐻 ≈ 𝐴𝐴𝑟𝑟(𝑅𝑅,𝕏𝕏)𝑋𝑋 𝐴𝐴𝑡𝑡𝐻𝐻(𝑅𝑅,𝜑𝜑)                                      (43) 
  The 𝐴𝐴𝑡𝑡𝐻𝐻(𝑅𝑅,𝜑𝜑)  is the transmit “array steering vector” or 
matrix. 𝐴𝐴𝑟𝑟(𝑅𝑅,𝕏𝕏) is the receive array steering vector or matrix. 
Channel approximated by sparse coefficient matrix 𝑋𝑋 over a 
polar dictionary parameterized by discrete ranges 𝑅𝑅 and angles 
𝕏𝕏. Compressed sensing forward measurement 

                𝑦𝑦 = 𝜑𝜑𝜑𝜑 + 𝑛𝑛                                                        (44) 

  The measurement vector 𝑦𝑦  collected by beam probing 
matrix 𝜑𝜑 from sparse channel vector 𝑥𝑥 with noise 𝑛𝑛. This is 
the core equation for CS-based alignment and estimation in 
each sub-partition. Hierarchical sparse model 

          𝑥𝑥 = 𝑥𝑥1 + 𝑥𝑥2,      �|𝑥𝑥1|�0 ≪ ||𝑥𝑥2||0                            (45) 

   𝑥𝑥1 models coarse (few strong components, near field spots) 
and 𝑥𝑥2  models fine residuals. Restricted Isometry property 
(RIP) requirements 

           1 − 𝛿𝛿𝑘𝑘)||𝑣𝑣|| ≤ ||𝜑𝜑𝜑𝜑|| ≤ (1 + 𝛿𝛿𝑘𝑘)||𝑣𝑣||𝑜𝑜 ≤ 𝑘𝑘         (46) 
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  The “sensing matrix” 𝜑𝜑 must satisfy RIP to stably recover 
𝑘𝑘 sparse signals, 𝛿𝛿𝑘𝑘  is RIP constant. 𝑣𝑣   is a 𝑘𝑘 sparse vector. 
Mutual coherence (design metric) 

               𝜇𝜇(𝜑𝜑) = 𝑚𝑚𝑚𝑚𝑚𝑚
|<𝜑𝜑𝑖𝑖,𝜑𝜑𝑗𝑗>|

�|𝜑𝜑𝑖𝑖|�
2
��𝜑𝜑𝑗𝑗��2

                                     (47) 

  Lower mutual coherence of a matrix 𝜑𝜑. �|𝜑𝜑𝑖𝑖|�
2 ��𝜑𝜑𝑗𝑗��

2
 is a 

Euclidean norm of the columns and ⟨𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑗𝑗⟩  is an inner 
product between columns 𝑖𝑖 and 𝑗𝑗 and is used when designing 
probing beams for fast alignment. Beam probing energy 
allocation across sub partitions 

               ∑ 𝑚𝑚𝑠𝑠 = 𝑀𝑀𝑠𝑠
𝑠𝑠=1                                                            (48) 

  The total number of probe measurements 𝑀𝑀 split among 𝑆𝑆 
spatial sub partitions, with allocation weights 𝑚𝑚𝑠𝑠 proportional 
to prior probability of energy in partition 𝑠𝑠 . Coarse to fine 
success probability (Bayes) 
               𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠)𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)         (49) 

  Where 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is an overall probability of success. 
𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠)  is a probability that a particular strategy and 
𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 | 𝑠𝑠)  is a conditional probability of success 
given that 𝑠𝑠  was selected. Aligns coarse selection probability 
and conditional fine success. Use to optimize probing 
allocation 𝑚𝑚𝑠𝑠. MIMO receive signal with beamformer 𝑤𝑤 and 
precoder 𝑓𝑓 

                   𝑦𝑦 = 𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠 + 𝑤𝑤𝐻𝐻𝑛𝑛                                       (50) 

  Baseband scalar observation used in beam alignment 
design. SNR after MRC combining  

                 𝑆𝑆𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = |𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻|2

𝜎𝜎𝑛𝑛2
                                                

(51) 
  MRC maximum ratio combining SNR: used when 
evaluating high SNR. MIMO-MRC behaviour, 

                 𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) ≥ 1
2𝑆𝑆𝑆𝑆𝑆𝑆 (𝑠𝑠𝐻𝐻)2

                                       (52) 
  lower bound on unbiased “AoA” estimate variance; 
indicates the near field model curvature changes estimation 
prediction. Range estimation  

                     𝑟𝑟 = 𝑐𝑐𝑐𝑐,𝑇𝑇 = 𝑟𝑟
𝑐𝑐

                                                                   
(53) 

  𝑇𝑇 is a path delay, 𝑐𝑐 is a speed of light and used to link polar 
sparse dictionary range bins to physical distances. RIS 
reflection model  

                 𝛽𝛽𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑒𝑒 ,     0 ≤ 𝑝𝑝𝑚𝑚 ≤ 1,                                       
(54) 
  Where 𝛽𝛽𝑚𝑚 is the resulting weighted or scaled probability. 
𝑝𝑝𝑚𝑚     is a probability value associated with some event 𝑚𝑚.𝑒𝑒 is 
an exponent could represent reliability factor, amplification. 
Constraint 0 ≤ 𝑝𝑝𝑚𝑚 ≤ 1  ensures that 𝑝𝑝𝑚𝑚  is valid probability.            
and RIS assisted path modification 

                𝑅𝑅𝑅𝑅𝑆𝑆, 𝑙𝑙 ⟵ ∑ 𝛽𝛽𝑚𝑚𝑔𝑔𝑚𝑚,𝑙𝑙
𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅
𝑚𝑚=1                                       (55) 

  The RIS is a “Reconfigurable intelligent surface (RIS)”. 𝑙𝑙 
is the index of a particular element or layer in the RIS. 𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅 
represents “Number of RIS elements”. 𝑔𝑔𝑚𝑚,𝑙𝑙  is the gain or 
channel coefficient from RIS element 𝑚𝑚 to layer. where each 
element applies amplitude 𝑝𝑝𝑚𝑚  and phase. 𝑔𝑔𝑚𝑚,𝑙𝑙  accounts for 
geometry and element response. RIS phase optimization  

                 max |𝑤𝑤𝐻𝐻(∑ ℎ𝑡𝑡,𝑚𝑚
𝐻𝐻𝑖𝑖=1

𝑚𝑚 ) |                                               
(56) 

  The non convex optimization to choose RIS phases that 
align reflected components in near field include distance 
dependent phase in ℎ𝑡𝑡,𝑚𝑚. The phase quantization  

                 𝜑𝜑𝑚𝑚 = 2𝜋𝜋
𝑄𝑄

  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑄𝑄𝜑𝜑𝑚𝑚
2𝜋𝜋

)                                        
(57) 
  The 𝜑𝜑𝑚𝑚  is a phase shift and 2𝜋𝜋

𝑄𝑄
 is a step size of each 

quantized phase level.   𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑄𝑄𝜑𝜑𝑚𝑚
2𝜋𝜋

)  denotes to rounds the 
value to the nearest integer. The Q level quantizer for 
hardware constrained RIS; include quantization error term in 
analysis. Polar domain dictionary (Closed form for ULA 
element 𝑛𝑛) 

𝑎𝑎𝑛𝑛(𝜑𝜑, 𝑟𝑟) = exp (�−𝑗𝑗 2𝜋𝜋
⋋

  �𝑟𝑟2 + 𝑥𝑥𝑛𝑛2 − 2𝑟𝑟𝑥𝑥𝑛𝑛 sin∮ � (58) 
  explicit atom used to assemble 𝐴𝐴𝑡𝑡(𝑅𝑅,𝜑𝜑)𝑖𝑖𝑖𝑖 (39);  supports 
joint angle range sparsity. Measurement noise model 
(AWGN+ model mismatch) 

           𝑛𝑛~𝑐𝑐𝑐𝑐(0,𝜎𝜎2 𝐼𝐼),              𝑦𝑦 = 𝜑𝜑𝜑𝜑 + 𝑛𝑛 + 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ    (59) 

  The 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ to capture dictionary off grid or near field 
approximation errors; use robust or off- grid recovery to 
mitigate. 
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         𝑎𝑎(𝜑𝜑 +△𝜑𝜑, 𝑟𝑟 + Δ𝑟𝑟) ≈ 𝑎𝑎(𝜑𝜑, 𝑟𝑟) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 Δ𝜑𝜑 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 Δ𝑟𝑟       
(60) 

  The 𝑎𝑎(𝜑𝜑, 𝑟𝑟) is an array steering vector. Δ𝜑𝜑,Δ𝑟𝑟 is a small 
change in angle and distance. ∂𝑎𝑎

∂𝜙𝜙
, ∂𝑎𝑎
∂𝑟𝑟

 is a partial derivative of 
𝑎𝑎  with respect to 𝜑𝜑  and 𝑟𝑟.  Then the overall constrained 
optimization for hierarchical sub partition framework fast 
alignment  

         min 1
2

||𝑌𝑌 − 𝜃𝜃(𝑥𝑥1 + 𝑥𝑥2)||(⋋1+⋋2 )                      (61) 
   𝑌𝑌  represents the observed vector and 𝑥𝑥1, 𝑥𝑥2   represents 
the components or variables to estimate. ⋋1+⋋2  is a 
regularization parameter. Joint recovery that enforces coarse 
support 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  from fast alignment for the strongest 
components 𝑥𝑥1   and 𝑥𝑥2  captures fine residuals. The 
pseudocode hybrid model of Fast alignment algorithm with 
Partition framework is presented in Algorithm 2. 
Algorithm 2: Fast alignment algorithm with Sub partition 
Framework 
1. Initialize antenna parameters (𝐷𝐷,⋋,𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅) 
2. Measure distance 𝑑𝑑 between transmitter and reciver. 
3. Compute Rayleigh Boundary 𝑟𝑟 = 2𝐷𝐷2/⋋ 
4. If 𝑑𝑑 < 𝑅𝑅 then Near- Field Model 
5. Else far-field Model 
6. Initialize Fast alignment algorithm 
7. Perform coarse beam scan identify strongest region 
8. Divide RIS plane into sub- partitions (spatial cells) 
9. For each sub-partition 𝑖𝑖 do 
10. Collect measurement vector  
11.       Apply compressed sensing recovery to estimateℎ𝑖𝑖 
12.       Store recovered subchannel 𝐻𝐻𝑖𝑖  
13. End for 
14. Combine {𝐻𝐻, 𝑖𝑖} → From overall channel matrix ℎ𝑒𝑒𝑒𝑒𝑒𝑒  
15. Optimize RIS reflection phases 𝜑𝜑 to maximize received 

power 
16. Evaluate Mutual coherence 𝜇𝜇(𝜑𝜑) to ensure stable 

recovery. 
17. Reconstruct near/far field beam patterns via ℎ𝑒𝑒𝑒𝑒𝑒𝑒  
18. Calculate SNR and spatial correlation for each model. 
19. Select Model (Near/ Far) with minimum MSE and higher 

SNR. 
20. Output final aligned channel estimate 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 for RIS 

assisted link. 
 

Near Field Model
Far field Model

 

                       Fig. 3 Near and Far field model 

D. Federated based training  
  “Generative adversarial network “is used to train the 

dataset from the ray-tracing (RT) simulation. “Generative 
adversarial Network” that uses two competing neural 
networks to generate new data. To perform better training, the 
“Federated Learning” is used to train the data. The data is 
collected from the users through the Base station in mmwave 
channel modelling. Federated learning is a decentralized 
machine learning technique where model is trained across 
multiple devices or servers. In Fig.4, the federated based 
training is shown. Let the central server initialize the model 
parameter as 
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          Fig .4 Federated based training 

         𝜔𝜔0 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜃𝜃)                                 (62) 
       Where 𝜔𝜔0 ∈ ℝ𝑑𝑑 represents the initial weight vector of the 
global model, and 𝜃𝜃 denotes the initial configuration of model 
parameters such as weights and biases. Each participating 
device 𝑖𝑖 ∈ {1,2, … . .𝑛𝑛𝑖𝑖} possesses its own dataset 

 
                𝐷𝐷𝑖𝑖 = {(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖 ,𝑗𝑗 ) | 𝑗𝑗 = 1,2, … . ,𝑛𝑛𝑖𝑖}                           
(63) 

 
       𝐷𝐷𝑖𝑖  is a dataset belong to client indexed by 𝑖𝑖. Where 𝑥𝑥𝑖𝑖,𝑗𝑗 
and 𝑦𝑦𝑖𝑖 ,𝑗𝑗 represent the input feature vector (eg., received signal 
or channel coefficient) and its corresponding label(channel 
state estimated), respectively, and 𝑛𝑛𝑖𝑖 is the number of samples 
stored locally at device 𝑖𝑖. 𝑗𝑗 is a sample number within the 𝑖𝑖𝑡𝑡ℎ 
dataset. Each client aims to minimize its local empirical loss 
function 

 
                 𝐹𝐹𝑖𝑖(𝜔𝜔) = 1

𝑛𝑛𝑖𝑖
∑ 𝑙𝑙(𝐹𝐹𝑤𝑤(𝑥𝑥𝑖𝑖,𝑗𝑗
𝑛𝑛𝑖𝑖
𝑗𝑗=1 ),𝑦𝑦𝑖𝑖 ,𝑗𝑗  ))                     (64) 

 
        where 𝐹𝐹𝑖𝑖(𝜔𝜔) is the prediction model parameterized by 𝜔𝜔 
and ∑ 𝑙𝑙(𝐹𝐹𝑤𝑤(𝑥𝑥𝑖𝑖,𝑗𝑗

𝑛𝑛𝑖𝑖
𝑗𝑗=1 ),𝑦𝑦𝑖𝑖 ,𝑗𝑗   denotes the local loss criterion, 

typically chosen as the mean squared error (MSE) for channel 
estimation. The global learning objective is expressed as the 
weighted aggregation of all local objectives: 
 

                𝐹𝐹(𝑤𝑤) = ∑ 𝑛𝑛𝑖𝑖
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 𝑁𝑁
𝑖𝑖=1 𝐹𝐹𝑖𝑖(𝜔𝜔),     𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  ∑ 𝑛𝑛𝑖𝑖𝑁𝑁

𝑖𝑖=1       
(65)  
 
        The 𝐹𝐹(𝑤𝑤) denotes the overall function or weighted 
average. The 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a total weight or sum of counts.𝑛𝑛𝑖𝑖 is a 
count or weight associated with the 𝑖𝑖𝑡𝑡ℎ  component. Ensuring 
the devices with larger local datasets contribute proportionally 
to the global optimization. During each communication round 
𝑡𝑡 , each client performs local stochastic gradient descent (SGD) 
updates on its dataset as 

               𝜔𝜔𝑖𝑖
𝑡𝑡+1 = 𝜔𝜔𝑡𝑡 − 𝜂𝜂Δ𝐹𝐹𝑖𝑖(𝜔𝜔𝑡𝑡)                                      (65) 

       𝜔𝜔𝑖𝑖
𝑡𝑡+1 is the updated value of the 𝑖𝑖𝑡𝑡ℎ element and 𝜔𝜔𝑡𝑡  is the 

current value of the variable at 𝑖𝑖𝑡𝑡ℎ element. 𝜂𝜂 is a step size or 
learning rate. Where,  𝜂𝜂 > 0 is the learning rate controlling the 
update step size and Δ𝐹𝐹𝑖𝑖(𝜔𝜔𝑡𝑡) is the Stochastic gradient descent 
(SGD) updates on its dataset as 

              Δ𝐹𝐹𝑖𝑖(𝜔𝜔𝑡𝑡) = 1
𝑛𝑛𝑖𝑖

 ∑ ∇𝜔𝜔𝑙𝑙(𝐹𝐹𝑤𝑤(𝑥𝑥𝑖𝑖,𝑗𝑗
𝑛𝑛𝑖𝑖
𝑗𝑗=1 ),𝑦𝑦𝑖𝑖 ,𝑗𝑗)                    (66) 

        With ∇𝜔𝜔𝑙𝑙  representing the derivative with respect to 
model parameters. Upon completing the local update phase, 
each client transmits the updated model weights to the central 
server as 

             𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑖𝑖
𝑡𝑡+1) ⟶ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                               

(67) 

Ensuring that no private data are shared, only parameters 
updates. The server then aggregates the local models using the 
federated Averaging (FedAvg) rule, 

             𝜔𝜔𝑡𝑡+1 = ∑ 𝑛𝑛𝑖𝑖
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁
𝑖𝑖=1  𝜔𝜔𝑖𝑖

𝑡𝑡+1                                        (68) 

To form a new global model that captures the statistical 
diversity across clients. The updated global parameters are 
then synchronized back to all clients as 

             𝜔𝜔𝑖𝑖
𝑡𝑡+1 ⟵ 𝜔𝜔𝑡𝑡+1 ,𝔸𝔸𝑖𝑖 ∈ {1,2, … . . ,𝑁𝑁}                      (69) 

 
  The 𝔸𝔸𝑖𝑖 is an index set or selected components. Allowing 
every participant to start the training round from the same 
global state. The iterative process continues until convergence 
is achieved according to the stopping criterion 

              �|𝜔𝜔𝑡𝑡+1 − 𝜔𝜔𝑡𝑡|�
2

< 𝜖𝜖                                                        
(70) 
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  Where �|𝜔𝜔𝑡𝑡+1 − 𝜔𝜔𝑡𝑡|�
2

 denotes the Euclidean norm and 
𝜖𝜖 > 0  is a small constant specifying the desired precision 
threshold. 𝜖𝜖  is a small positive threshold. To handle 
heterogeneous data distributions and prevent client drift, a 
proximal regularization term is incorporated into the local 
objective as 

              𝐹𝐹𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜔𝜔) = 𝐹𝐹𝑖𝑖(𝜔𝜔) + 𝜇𝜇
2

 ||𝜔𝜔 − 𝜔𝜔𝑡𝑡||                             
(71) 

  Where 𝜇𝜇  is a positive coefficient that penalizes the 
deviation between the local and global models, thereby 
improving stability in non-identically distributed scenarios. 
𝐹𝐹𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜔𝜔) is the proximal version of 𝐹𝐹𝑖𝑖(𝜔𝜔) . To further 
accelerate convergence, adaptive momentum-based 
optimization can be employed through the Federated Adam 
variant  

  𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 ,     𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2      
(72) 

       The 𝑔𝑔𝑡𝑡    is the gradient of the loss function at iteration 
𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑡𝑡 is exponentially weighted moving average (EWMA). 
𝜗𝜗𝑡𝑡 is a EWMA of past squared gradients and 𝛽𝛽1,𝛽𝛽2 are decay 
rates for the moving averages. where 𝑔𝑔𝑡𝑡 = ∇𝐹𝐹(𝜔𝜔𝑡𝑡)  is the 
stochastic gradient, 𝛽𝛽1,𝛽𝛽2 ∈ [0,1)  are momentum coefficient 
and the small constant 𝜖𝜖  measures stability. For devices 
contributing unequally to the global update due to data 
imbalance, the aggregation can be refined as 

              𝜔𝜔𝑡𝑡+1 = ∑ 𝑝𝑝𝑖𝑖𝜔𝜔𝑖𝑖
𝑡𝑡+1𝑁𝑁

𝑖𝑖=1
∑ 𝑃𝑃𝑖𝑖𝑁𝑁
𝑖𝑖=1

                                               (73) 

  Where 𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 denotes the proportional contribution 
weight for client 𝑖𝑖.  The convergence behaviour of the 
federated optimization after 𝑇𝑇 rounds can be bounded as 

                𝔼𝔼[𝐹𝐹(𝜔𝜔𝑇𝑇)] − 𝐹𝐹(𝜔𝜔∗) ≤ 𝐶𝐶
𝑇𝑇

+ 𝑂𝑂(𝜂𝜂2𝜎𝜎2)                   (74) 

                𝔼𝔼[𝐹𝐹(𝜔𝜔𝑇𝑇)]  is an expected value of the objective 
function. Where 𝐹𝐹(𝜔𝜔∗)  is the optimal loss value, 𝑐𝑐  is a 
constant 𝐹𝐹(. )  and 𝜎𝜎2  represents the variance of stochastic 
gradients. Finally, to improve communication efficiency, the 
parameter transmission can be optimized by minimizing the 
cumulative deviation between local and global updates. 

     𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ||𝜔𝜔𝑖𝑖
𝑡𝑡+1𝑁𝑁

𝑖𝑖=1 − 𝜔𝜔𝑡𝑡||2         , �|𝜔𝜔𝑖𝑖
𝑡𝑡+1 − 𝜔𝜔𝑡𝑡|�

2
≤ 𝛿𝛿     (75) 

  Where 𝛿𝛿 defines the allowable update bound that controls 
the communication budget. Through these iterative procedures, 
the federated- based training mechanism ensures that mmwave 
channel models are collaboratively trained using distributed 
observations while maintaining user privacy and minimizing 
the bandwidth usage. The resulting global model effectively 
generalizes across diverse propagation environments, 
providing robust channel estimation and prediction with 
reduced communication cost and enhanced data security. 

E. Machine Learning based Robust channel estimation:     

           The novelty “SCOVEM: Score-Based Generative 
Model-Enhanced Support Vector Machine with Bayesian 
Optimization for MmWave Fault Diagnosis” is a combine 
of SVM, Score based generative model and bayes 
optimization” The robustness plays an important role, when 
the channel is estimated or predicted. The SVM, Score based 
generative model and the Bayes Optimisation to make the 
channel estimation more robustness. The Support Vector 
Machine (SVM) offer a specific kind of robustness that 
makes to estimate the channel in mmWave systems. The 
robustness of SVM comes from its core principle of 
maximizing the margin. SVM used to directly predict a 
continuous channel matrix. Then, they are often applied to 
solve “channel estimation problem” as a classification or 
“regression task”. The Support Vector Machine algorithm is 
use to classify and predict the channel and it make more robust 
in channel estimation. For Channel estimation using the 
novelty method as “Score-Based Generative Model-Enhanced 
Support Vector Machine with    Bayesian Optimization for 
mmWave channel estimation”. The proposed model integrates 
Score based 

 The overall process can be formulated as: 

                        𝑦𝑦 = 𝐴𝐴ℎ + 𝑛𝑛                                            (76) 

  Where 𝑦𝑦  denotes the received pilot signal, 𝐴𝐴  represents 
the known sensing matrix, ℎ is the unknown channel vector to 
be estimated, and 𝑛𝑛~𝒞𝒞𝒞𝒞(0,𝜎𝜎2𝐼𝐼) is additive “Gaussian noise”. 

               𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡                             (77) 

  The forward stochastic differential equation (SDE) 
describes the diffusion process, where 𝑓𝑓(𝑥𝑥, 𝑡𝑡)  is the drift 
function, 𝑔𝑔(𝑡𝑡)  is the noise schedule, and 𝑤𝑤𝑡𝑡  represents 
“Brownian motion”. 

             𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡) = ∇𝑥𝑥 log𝑃𝑃𝑡𝑡(𝑥𝑥)                                     (78) 
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  Here, 𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡)  denotes the score function, parameterized 
by neural network weights 𝜃𝜃, which estimates the gradient of 
log-density at time 𝑡𝑡. 

         𝑑𝑑𝑑𝑑 = {𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝑔𝑔(𝑡𝑡)2𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡        (79) 

  This reverse time SDE reconstructs samples from the 
learned data distribution, enabling the generation of high-
quality synthetic samples used to augment the SVM training. 

     ∇𝑥𝑥 log 𝑝𝑝(𝑥𝑥|𝑦𝑦) = ∇𝑥𝑥 log 𝑝𝑝(𝑥𝑥) + ∇𝑥𝑥 log 𝑝𝑝(𝑦𝑦|𝑥𝑥)           (80) 

  The conditional posterior score combines prior knowledge 
𝑝𝑝(𝑥𝑥)  and likelihood information 𝑝𝑝(𝑦𝑦|𝑥𝑥)  to generate channel 
estimates consistent with observed data. 

     ∇𝑥𝑥 log 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 1
𝜎𝜎2

 𝐴𝐴𝐻𝐻(𝐴𝐴𝐴𝐴 − 𝑦𝑦)                                (81) 

Assuming a Gaussian likelihood model, this represents the 
gradient of the measurement log likelihood used during 
posterior sampling. 

             𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝜂𝜂𝑘𝑘𝑠𝑠𝜃𝜃(𝑥𝑥𝑘𝑘 , 𝑡𝑡𝑘𝑘) + �2𝜂𝜂𝑘𝑘𝑧𝑧𝑘𝑘                  (82) 

Discretised Langevin dynamics for generating channel 
samples, where 𝜂𝜂𝑘𝑘 denotes step size and 𝑧𝑧𝑘𝑘~𝒩𝒩(0, 𝐼𝐼) 

                𝒟𝒟 = ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��𝑗𝑗=1
𝑚𝑚

                                              (83) 

The generated dataset 𝒟𝒟  augments the original training 
data, improving generalization in low SNR conditions. 

   min 1
2
�|𝜔𝜔|�2 + 𝐶𝐶 ∑ (𝜗𝜗𝑖𝑖 + 𝜗𝜗𝑗𝑗)𝑛𝑛

𝑖𝑖=1                                      (84) 

This represents the primal optimization of SVM 
regression using 𝜗𝜗 insensitive loss and regularization constant 
𝐶𝐶. 
 
𝑦𝑦(𝑥𝑥) = ∑ (∝𝑖𝑖−∝𝑖𝑖∗)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑛𝑛

𝑖𝑖=1                                     (85) 
The prediction function of SVM where 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)  is the 

“kernel function defining the feature space” mapping. 

             ℒ𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2

 �|𝜔𝜔|�2 + 𝒞𝒞�∑ 𝑙𝑙𝐸𝐸(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑙𝑙) +⋋𝑛𝑛
𝑖𝑖=1

∑ 𝜔𝜔𝑗𝑗𝑙𝑙𝐸𝐸(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑙𝑙)𝑚𝑚
𝑗𝑗=1 �                                                            (86) 

This augmented objective integrates real and generated 
samples with weighting factor ⋋ and sample confidence 𝜔𝜔𝑗𝑗 . 

     𝜔𝜔𝑗𝑗 = exp (−𝛾𝛾 ��𝐴𝐴𝑥𝑥𝑗𝑗 − 𝑦𝑦��
2

)                                         (87) 

𝜔𝜔𝑗𝑗  is the weight assigned to the  𝑗𝑗𝑡𝑡ℎ  estimate. 𝑥𝑥𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ 

candidate vector. 𝐴𝐴 is the channel matrix. ��𝐴𝐴𝑥𝑥𝑗𝑗 − 𝑦𝑦��
2
 is the 

squared Euclidean norm. Weight of each synthetic sample 
determined by posterior consistency; higher weight implies 
better alignment with real measurements. 

ℛ𝑣𝑣𝑣𝑣𝑣𝑣(𝜑𝜑) = 1
𝑁𝑁𝑣𝑣
∑ �|𝑦𝑦𝑖𝑖(φ) − yi|�

2𝑁𝑁𝑣𝑣
𝑖𝑖=1                                      (88) 

 
  The ℛ𝑣𝑣𝑣𝑣𝑣𝑣(𝜑𝜑)  is the validation error or residual as a 
function of φ.𝑁𝑁𝑣𝑣is the number of validation sample and 𝑦𝑦𝑖𝑖(φ), 
predicted or estimated measurement for the 𝑖𝑖𝑡𝑡ℎ  sample. 𝑦𝑦𝑖𝑖 
denotes the actual observed measurement for the 
𝑖𝑖𝑡𝑡ℎ sample.  The validation risk function used for 
hyperparameter tuning. 

𝑓𝑓(𝜑𝜑)~𝒢𝒢𝒢𝒢�0,𝐾𝐾𝐺𝐺𝐺𝐺(𝜑𝜑,𝜑𝜑1)�                                                     
(89) 

       𝑓𝑓(𝜑𝜑)is a function of the variable 𝜑𝜑  and 𝒢𝒢𝒢𝒢  is Gaussian 
process. 0 is the mean function of the Gaussian process. 
𝐾𝐾𝐺𝐺𝐺𝐺(𝜑𝜑,𝜑𝜑1)  is the covariance (kernel) function between 
𝜑𝜑 and 𝜑𝜑1(input points for the function). Bayesian optimization 
models the objective function 𝑓𝑓(𝜑𝜑) as a gaussian process with 
covariance kernel 𝑘𝑘𝐺𝐺𝐺𝐺. 

   𝜇𝜇(𝜑𝜑∗) = 𝐾𝐾∗𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1𝑓𝑓, 𝜎𝜎2(𝜑𝜑) = 𝑘𝑘(𝜑𝜑∗,𝜑𝜑∗) −
𝑘𝑘∗𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1𝑘𝑘∗                                                                           
(90) 

      𝑘𝑘(𝜑𝜑∗,𝜑𝜑∗)  represents the covariance of the scalar. 𝐼𝐼 
represents the “identity matrix” and 𝑘𝑘 is the 𝑛𝑛 × 𝑛𝑛 covariance 
matrix for training points. The Mean and variance of the GP 
posterior are computed for candidate parameter 𝜑𝜑 . 

𝐸𝐸𝐸𝐸(𝜑𝜑) = �𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇(𝜑𝜑)�𝜑𝜑(𝑧𝑧) + 𝜎𝜎(𝜑𝜑)𝜏𝜏(𝑧𝑧)                        (91) 

 
      Expected improvement acquisition function where 𝑧𝑧 =
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚−𝜇𝜇(𝜑𝜑)

𝜎𝜎(𝜑𝜑)
, balancing exploration and exploitation. 

𝜑𝜑𝑡𝑡+1 = arg max𝐸𝐸𝐸𝐸 (𝜑𝜑)                                                         
(92) 

        𝜑𝜑𝑡𝑡+1 represents next input point to evaluate the function 
and  𝐸𝐸𝐸𝐸 (𝜑𝜑)  is the expected improvement at input 𝜑𝜑 . The 
arg𝑚𝑚𝑚𝑚𝑚𝑚  is the value of 𝜑𝜑  that maximizes 𝐸𝐸𝐸𝐸 . Next 
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hyperparameter configuration selected by maximizing 
expected improvement. 

𝒥𝒥(𝜃𝜃,𝓌𝓌) = ℳ𝑡𝑡,𝑥𝑥0,𝑥𝑥𝑡𝑡[||𝑠𝑠𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡) − ∇𝑥𝑥𝑡𝑡 log 𝑝𝑝𝑡𝑡�0�𝑥𝑥𝑡𝑡�𝑥𝑥0��|2]+𝛼𝛼ℒ𝑎𝑎𝑎𝑎𝑎𝑎  
(93) 

      𝒥𝒥(𝜃𝜃,𝓌𝓌) is the total loss to optimize model parameters 𝜃𝜃. 
ℳ𝑡𝑡,𝑥𝑥0,𝑥𝑥𝑡𝑡   Expectation over of diffusion time step, original data 
samples and noisy sample at step 𝑡𝑡. log 𝑝𝑝𝑡𝑡�0�𝑥𝑥𝑡𝑡�𝑥𝑥0��|2] is a true 
score of the perturbation kernel. 𝛼𝛼ℒ𝑎𝑎𝑎𝑎𝑎𝑎  is an optional 
augmentation loss weighted by 𝛼𝛼 . Joint objective combing 
SGM score matching loss and augmented SVM regression 
loss with coupling constant 𝛼𝛼. 

ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1
𝑀𝑀
∑ 𝑦𝑦(𝑥𝑥𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                      (94) 

The ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   is a final estimate of the function or quantity 
of interest. 𝑀𝑀 is the “Number of Monte carlo” samples and 𝑥𝑥𝑚𝑚  
is the 𝑚𝑚𝑡𝑡ℎ  sample from the input distribution. 𝑦𝑦(𝑥𝑥𝑚𝑚) is the 
function evaluation at sample 𝑥𝑥𝑚𝑚.     

Final channel estimate obtained as Monte Carlo average 
over 𝑀𝑀 posterior samples from the SGM. 

𝔼𝔼 ��|ℎ = ℎ1|�2� ≤ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑜𝑜 ��|𝑤𝑤|�
2

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
� + 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔           (95) 

     ℎ is a True channel and ℎ1 is the estimated channel. ��|𝑤𝑤|�
2

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
� 

is a variance term, showing decay with effective sample size 
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 .Analytical error bound of the proposed model, where 
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is approximation bias, 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛 +⋋ ∑ 𝑤𝑤𝑗𝑗𝑗𝑗  is the 
“effective number of training samples”, and 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔  denotes the 
generative mismatch error. The pseudocode for SCOVEM 
hybrid model is presented in Algorithm 3.       

Algorithm 3 
Hybrid model of SCOVEM 
1. Initialize system parameters �𝑌𝑌𝑝𝑝,𝜎𝜎2,𝜑𝜑,𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅� 
2. Load training dataset 𝐷𝐷 = {𝑋𝑋𝑖𝑖 ,𝐻𝐻𝑖𝑖} from simulation 

environment 
3. Initialize SVM parameters (Kernel type, 𝐶𝐶, 𝜀𝜀) 
4. Initialize Score based generative model weights 𝑤𝑤𝑜𝑜 . 
5. Initialize Bayesian optimizer with prior 𝐺𝐺𝐺𝐺(0, 𝑘𝑘). 
6. For each training 𝐻𝐻𝑖𝑖  in D do 
7.    Add Gaussian noise 𝜎𝜎2 

8.    Compute score targets 𝑠𝑠∗ = ∇�𝐻𝐻𝑖𝑖𝑘𝑘� log 𝑝𝑝�𝐻𝐻𝑖𝑖𝑘𝑘� 
9.    Update model weights 𝑤𝑤 ← 𝑤𝑤 − 𝜂𝜂∇𝐿𝐿  using    

denoising score matching loss  
10. End for 
11. Generate Synthetic channel samples ℋusing reverse SDE. 
12. Augment dataset 𝐷𝐷′ = 𝐷𝐷⋃{�𝜑𝜑.ℋ𝑔𝑔𝑔𝑔𝑔𝑔 ,ℋ𝑔𝑔𝑔𝑔𝑔𝑔�} for training 
13. Train support vector regression (SVR) model on 𝐷𝐷′ 
14. Obtain prediction function 𝑓𝑓�𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥)� = 𝑋𝑋𝑖𝑖 ,𝑋𝑋 + 𝑏𝑏 
15. Perform Bayesian optimization to tune SVM hyper 

parameters (𝐶𝐶, 𝜀𝜀, 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 
16. For each received pilot signal 𝑌𝑌𝑝𝑝: 
17. Predict Channel estimate ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 �𝑆𝑆𝑆𝑆𝑆𝑆�𝑌𝑌𝑝𝑝 ,𝜃𝜃�� 
18. Refine prediction using posterior correction: 
19. ℋ = ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +⋋∗ 𝑠𝑠(ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑡𝑡0) 
20. Evaluate performance metrics (MSE, BER, spectral 

efficiency) 
21. Output final robust channel estimate ℋ with optimized 

parameters 𝜃𝜃∗.     
                    

F.  Score based Generative model 
          “Score based Generative model” also called as “Score 
based Diffusion model” or “Score Based Model”. The Score 
Based model then learns the reverse process, which involves 
iteratively "denoising" random noise to generate new, realistic 
data and make robustness. In score-based model, it involves 
Stochasticity as a Regularize and the Agnostic to the Manifold 
Hypothesis. The Stochasticity as a Regularize is used to The 
continuous insertion and removal of noise in diffusion process 
acts as a powerful regularize. It forces the model to learn a 
smooth, continuous representation of the data distribution, 
rather than simply memorizing the training data. This makes 
the model less sensitive to small perturbations or outliers in 
the input, a key aspect of robustness.  

However, SGM can operate even when this assumption 
does not hold. The diffusion process effectively analyses the 
data across the entire space, and the model learns to guide 
samples back to the areas of high data density. This makes 
SGM robust to data distributions in channel estimation and 
prediction. The “score based generative model” also known as 
“Diffusion probabilistic model”, learns to estimate the score 
function of the channel data. It constructs a forward diffusion 
process that gradually perturbs the channel data with Gaussian 
noise, followed by a learned reverse process that denoises and 
reconstructs the original signal distribution. 

                                 𝑦𝑦 = 𝐴𝐴ℎ + 𝑛𝑛                                        (96) 
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Where 𝑦𝑦  represents the received pilot signal, 𝐴𝐴  is the 
known “measurement matrix”, ℎ is the true channel vector, 
and 𝑛𝑛 ∼ 𝒞𝒞𝒞𝒞(0,𝜎𝜎2𝐼𝐼) is “complex Gaussian noise”. 

                  𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥0) = 𝒩𝒩(𝑥𝑥𝑡𝑡;  𝛼𝛼𝑡𝑡𝑥𝑥0,𝜎𝜎𝑡𝑡2𝐼𝐼)                                
(97) 

     𝑥𝑥𝑜𝑜  is the original data or signal. 𝑥𝑥𝑡𝑡  is a noisy version of 
data. The 𝑞𝑞𝑡𝑡  is the conditional “probability distribution” and 
𝛼𝛼𝑡𝑡  is the scaling factor. 𝒩𝒩(𝑥𝑥𝑡𝑡;  𝛼𝛼𝑡𝑡𝑥𝑥0,𝜎𝜎𝑡𝑡2𝐼𝐼)   is a gaussian 
distribution with mean 𝜇𝜇 . The forward diffusion process 
gradually corrupts the data 𝑥𝑥0(true channel) into noisy latent 
variables 𝑥𝑥𝑡𝑡  by scaling ∝𝑡𝑡 and adding Gaussian noise with 
variance 𝜎𝜎𝑡𝑡2. 

               𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡                                                 
(98) 

      𝑑𝑑𝑑𝑑   is an “infinitesimal change” in 𝑥𝑥 and 𝑑𝑑𝑑𝑑  is the drift 
term. The forward stochastic differential equation describes 
the continuous noise adding process, where 𝑓𝑓(𝑥𝑥, 𝑡𝑡)  is drift, 
𝑔𝑔(𝑡𝑡) is diffusion strength, and 𝑑𝑑𝑑𝑑𝑡𝑡  is “wiener noise”. 

                 𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡) = ∇𝑥𝑥 log 𝑝𝑝𝑡𝑡(𝑥𝑥)                                                      
(99) 

The “score function” 𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡) , parameterized by neural 
weights 𝜃𝜃 , approximates the gradient of the logarithmic 
density of the noisy data distribution at time 𝑡𝑡. The ∇𝑥𝑥 is the 
gradient with respect to 𝑥𝑥.  𝑝𝑝𝑡𝑡(𝑥𝑥) is the probability density of 
𝑥𝑥 at time 𝑡𝑡. 

        𝑑𝑑𝑑𝑑 = [𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝑔𝑔(𝑡𝑡)2𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡)]𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡                
(100) 

The reverse time SDE reconstructs clean samples by 
iteratively denoising, effectively inverting the diffusion 
process using score function. 

         𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 + 𝜂𝜂𝑘𝑘𝑠𝑠𝜃𝜃(𝑋𝑋𝑘𝑘, 𝑡𝑡𝑘𝑘) + �2𝜂𝜂𝑘𝑘𝑧𝑧𝑘𝑘                              
(101) 

        𝑋𝑋𝑘𝑘+1 represents sample after one update and 𝑡𝑡𝑘𝑘  is a Time 
or noise level at step K. 𝑧𝑧𝑘𝑘  is a random gaussian noise and 
�2𝜂𝜂𝑘𝑘𝑧𝑧𝑘𝑘 is a Random perturbation ensuring stochasticity. 
Discretised Langevin dynamics used for sampling; 𝜂𝜂𝑘𝑘  Is the 
step size and 𝑧𝑧𝑘𝑘~𝒩𝒩(𝑜𝑜, 𝐼𝐼)  adds stochasticity to improve 
coverage of the data distribution. 

        ∇𝑥𝑥 log 𝑝𝑝(𝑥𝑥|𝑦𝑦) =∇𝑥𝑥 log 𝑝𝑝(𝑋𝑋) +∇𝑥𝑥 log 𝑝𝑝(𝑦𝑦|𝑥𝑥)               
(102) 
 
   ∇𝑥𝑥  is a Gradient with respect to 𝑥𝑥 Conditional posterior 
score decomposition; ∇ log 𝑝𝑝(𝑋𝑋)  is the conditional 
probability and log 𝑝𝑝(𝑦𝑦|𝑥𝑥) is the likelihood. The generative 
model integrates both prior 𝑝𝑝(𝑥𝑥) and likelihood 𝑝𝑝(𝑦𝑦|𝑥𝑥) terms 
for channel estimation given pilot signals. 

            ∇𝑥𝑥 log 𝑝𝑝(𝑦𝑦|𝑥𝑥) = 1
𝜎𝜎2
𝐴𝐴𝐻𝐻(𝐴𝐴𝐴𝐴 − 𝑦𝑦)                               

(103) 

  Assuming additive Gaussian noise, this provides the 
analytical expression for the likelihood gradient in the 
posterior score. 

            𝑥𝑥𝑜𝑜 = 𝜍𝜍[𝑥𝑥0|𝑥𝑥𝑡𝑡] = 1
𝛼𝛼𝑡𝑡

(𝑥𝑥𝑡𝑡 − 𝜎𝜎𝑡𝑡2𝑠𝑠𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡))                      
(104) 

          𝑥𝑥𝑜𝑜  is the predicted clean data and 𝑥𝑥𝑡𝑡  noisy data at 
time  𝑡𝑡.𝛼𝛼𝑡𝑡  is a signal scaling coefficient and 𝜍𝜍  is used to 
represent function or operator. Posterior mean estimate of the 
clean signal given its noisy counterpart, forming the core of 
the reverse reconstruction process. 

  ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) = 𝔼𝔼𝑡𝑡,𝑥𝑥[⋋ (𝑡𝑡)�|𝑠𝑠𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡) − ∇𝑥𝑥  𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑡𝑡(𝑋𝑋𝑡𝑡|𝑋𝑋0)|�2] 
(105) 

  The ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)  is a Loss function and 𝑡𝑡  is the diffusion 
time. 𝑋𝑋0 is an original data and 𝑋𝑋𝑡𝑡 is a noisy data. 𝔼𝔼 is average 
value or mean. Training loss of the SGM using denoising 
score matching; ⋋ (𝑡𝑡) is a time dependent weighting term that 
stabilizes learning across noise scales. 

               ∇𝑥𝑥 log 𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑜𝑜) = −𝑥𝑥𝑡𝑡−𝛼𝛼𝑡𝑡𝑥𝑥𝑜𝑜
𝜎𝜎𝑡𝑡
2                                

(106) 

The score of the Gaussian noise perturbation process used 
as the supervised target during training. The Mean squared 
Error 𝐸𝐸, 

                 ℎ = 𝐸𝐸𝑝𝑝�𝑥𝑥�𝑦𝑦�[𝑋𝑋]                                                     
(107) 

The ℎ is the condition mean or estimate and 𝑋𝑋 is a random 
variable. Final channel estimation obtained as the expectation 
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of the posterior samples generated by the reverse process 
conditioned on measurements 𝑦𝑦. 

                𝑃𝑃𝑡𝑡(𝑥𝑥) = ∫ 𝑝𝑝𝑡𝑡(𝑥𝑥|𝑥𝑥0)𝑝𝑝(𝑥𝑥0)𝑑𝑑𝑥𝑥𝑜𝑜                                
(108) 

𝑝𝑝(𝑥𝑥𝑜𝑜) is the prior distribution of 𝑥𝑥𝑜𝑜 and 𝑝𝑝𝑡𝑡(𝑥𝑥|𝑥𝑥0)  is the 
forward transition “probability” and 𝑑𝑑𝑥𝑥𝑜𝑜  integral over all 
possible 𝑥𝑥𝑜𝑜 . Marginal distribution of noisy data at time 𝑡𝑡 ; 
computed implicit 

         𝒯𝒯(𝜃𝜃) = ∫𝐸𝐸[||𝑠𝑠𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡) − ∇𝑥𝑥 , log 𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑜𝑜)||2]𝑑𝑑𝑑𝑑    (109) 

   𝒯𝒯(𝜃𝜃) is a Continuous time score matching loss, integrating 
over diffusion time for stable parameter optimization. 

     𝑥𝑥𝑡𝑡 − ∆𝑡𝑡= 𝑥𝑥𝑡𝑡 + ∆𝑡𝑡[𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝑔𝑔(𝑡𝑡)2𝑠𝑠𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡)] + 𝑔𝑔(𝑡𝑡)�∆𝑡𝑡𝑧𝑧𝑘𝑘   
(110) 

Discrete time approximation of the reverse SDE used for 
sample generation, implemented in practical reconstruction. 

                                        ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 = 𝐴𝐴 + 𝑋𝑋𝑜𝑜𝑚𝑚                               (111) 

      ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚  is the estimated value for the 𝑚𝑚𝑡𝑡ℎ sample and 𝑋𝑋𝑜𝑜𝑚𝑚  is 
an original or random component for 𝑚𝑚𝑡𝑡ℎ  sample. 𝑀𝑀  is a 
number of samples and 𝑚𝑚  is a sample index. Each generated 
clen sample𝑋𝑋𝑜𝑜𝑚𝑚  is transformed back to the estimated channel 
domain using pseudo inverse of the measurement matrix. 

                                     ℎ = 1
𝑀𝑀
∑ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑀𝑀
𝑚𝑚=1                             (112) 

Monte Carlo averaging across M reconstructed samples 
reduces variance in final channel estimate. 𝑉𝑉𝑉𝑉𝑉𝑉(ℎ)  is the 
sample variance of ℎ. 

                   𝑉𝑉𝑉𝑉𝑉𝑉(ℎ) = 1
𝑀𝑀−1

∑ �|ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 − ℎ|�2𝑀𝑀
𝑚𝑚=1                (113) 

Variance metric quantifying uncertainty in the generative 
estimation, important for reliability evaluation. 

               𝐸𝐸 ��|𝐻𝐻 − ℎ|�2� = 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 + 𝑣𝑣𝑣𝑣𝑣𝑣                   (114) 

Bias-variance decomposition of the channel estimation 
error; 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  is the squared distance between the average 
estimate and the true value. both components are reduced by 
SGM due to denoising regularization and posterior averaging. 

                𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = 10 log10 �
�|𝐴𝐴𝐴𝐴|�

2

�|𝐴𝐴𝐴𝐴−𝑦𝑦|�
2�             (115) 

     𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 is the effective signal noise ratio and the �|𝐴𝐴𝐴𝐴|�2is 
the signal power and the �|𝐴𝐴𝐴𝐴 − 𝑦𝑦|�2  is the noise power. A 
higher SNR indicates the predicted signal 𝐴𝐴𝐴𝐴 closely matches 
the observed data 𝑦𝑦 mean low error. 
 
 

V. EXPERIMENTAL RESULT 

A. Simulation setup 

  The section proposes channel estimation and prediction 
using machine learning as well as it is set up for simulation. 
To simulate the proposed research method, the MATLAB R2023a 
is used.  Table 2 displays the System specification. 

Table 2 

System specifications  
Hardware specifications Hard disk 512 GB 

RAM 16 GB 
Software specifications Simulation tools MATLAB R2023a 

OS Windows 11(64- bit) 
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Fig. 5 Mmwave environment 

     In Fig. 5, The mmwave network which consists of 20 -
user equipment (UEs), 2 base station (BS), 1-MIMI-BS, 1-
RIS and customized channel environment and parameters. 

 

 

                    Fig. 6 Objective function Model 

 In Fig. 6, To estimate the channel by using Score 
based generative model enhanced support vector machine 
Bayesian optimization for mmwave fault diagnosis 
technique. The x axis taken as kernel scale, Box 
constraint and y axis as estimated objective function 
value.  
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                     Fig. 7 SNR vs MSE 

 In Fig. 7, x axis represents SNR and y axis represents 
Mean squared error (MSE). The SNR increases, the 
received signal becomes clearer and less corrupted by 
noise, leading to lower MSE. 

  

          Fig.8 Enhanced with Diffusion Model 

   In Fig. 8, the channel estimation, User Equipment (UE 
ID) and SBR (dB) taken as x and y axis respectively. To 
enhance the data distribution, channel estimation and 
prediction using score-based diffusion model technique.  

 

                Fig. 9 FL-RL UE performance Overview 

    In Fig. 9, the UE ID and SNR (dB) are taken as x axis and 
y axis respectively. The federated learning-based training for 
hybrid beamforming, where a Generative Adversarial Network 
(GAN)is trained on ray tracing simulation data. 

B. Comparative analysis 

    The proposed method is evaluated by comparing with many 
existing methods in the following domains: BER vs. SNR 
(dB), SNR (dB) vs. Spectral Efficiency (bits/s/Hz), Number of 
RIS elements vs. Transmission Rate (Mbps), Number of RIS 
elements vs. Spatial Correlation, SNR (dB) vs. MSE (Mean 
Squared Error). Compared to existing method such as 
DSSVAA (Directional Scanning Sounding and Virtual 
Antenna array) [1], DEMSQP (Data embedded multi-sub band 
quasi-perfect) [3] and DDFFCE (Data-driven frequency-flat 
cascaded channel estimation) model [13], the proposed model 
performed good and accurate.  

a. BER vs SNR  

       The “Bit Error Rate (BER)” is a critical metric used to 
evaluate reliability of communication system. The “SNR” 
increases, the received signal becomes stronger relative to the 
noise, which reduces the probability of symbol errors. At low 
SNR values, noise dominates, resulting in higher BER, while 
at high SNR helps in selecting optimal modulation schemes 
and beamforming strategies.  
 
                                   Table 3 
                           BER Vs SNR (dB) 

X-axis (BER) Y-axis (SNR (dB)) 
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Proposed  DSSVAA DEMSQP 
10−16 10 35        75 
10−12 12 39 78 
10−10 15 44 81 
10−5 25 55 85 
10−2 30 65 90 

 

                    Fig. 10 BER vs SNR (dB) 

     In table 3 and Fig. 10 represents the variation of “Bit Error 
Rate (BER)” with “SNR” (dB). At a very low BER of 10⁻¹⁶ 
(0.0000000000000001), the proposed model requires only 10 
dB, while ESPRIT and DEMSQP require 35 dB and 75 dB, 
respectively. As the BER increases to 10⁻² (0.01), the 
proposed method reaches 30 dB, whereas DSSVAA and 
DEMSQP rise to 65 dB and 90 dB. The proposed model 
achieves “higher efficiency”, robustness compared to the 
existing DSSVAA and DEMSQP methods. 

b.  SNR Vs Spectral efficiency 

The SNR increases, the receiver can better distinguish 
transmitted signal from noise, resulted as higher achievable 
data rates and improved spectral efficiency. The relation 
between SNR and spectral efficiency is typically nonlinear, 
where efficiency increases logarithmically with SNR 

                                  
Table 4 

SNR (dB) vs Spectral efficiency 
X-axis (SNR (dB)) Y-axis Spectral efficiency (mbps) 

Proposed   DSSVAA DEMSQP 
35 15.5 5.5 1.5 
39 16 6 2 
45 16.5 7 3 

55 18 7.5 4 
65 19.5 8.5 4.5 

 

                 Fig. 11 SNR (dB) vs Spectral efficiency (Mbps)   

In table (4) and Fig.11 represents the variation of spectral 
efficiency (Mbps) with respect to “SNR” in dB. At 35 dB, the 
proposed model achieves 15.5 Mbps, outperforming DSSVAA 
(5.5 Mbps) and DEMSQP (1.5 Mbps). Finally, the SNR rises 
to 65 dB, the proposed method reaches 19.5 Mbps, while 
DSSVAA and DEMSQP reaches 8.5 Mbps, respectively. The 
proposed method provides higher spectral efficiency and 
better performance under improved SNR conditions. 

 
c. No. of RIS elements Vs Transmission rate (Mbps) 

       The transmission rate determines how much data is 
successfully transmitted per unit time, measured in megabits 
per second (Mbps). The number of RIS elements increases, 
effective channel gain and SNR also improve, leading to a 
higher transmission rate. The relationship can be expressed as: 

               𝑅𝑅 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑁𝑁))                       (116) 
Where: 

• 𝑅𝑅: transmission rate (bits/s or Mbps) 
• 𝐵𝐵: Bandwidth (HZ) 

         𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑁𝑁) = Effective SNR  
Table 5 

No. of RIS element vs Transmission rate(mbps) 
X-axis (No.of. RIS element) Y-axis Transmission rate(mbps) 

Proposed   DSSVAA DDFFCE 
10 1 20 90 
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20 3 40 92 
50 5 50 96 
70 7 70          98 

100 8 90 100 

 

Fig. 12 Number of RIS element vs Transmission Rate (Mbps) 

   In Table 5 and Fig. 12 illustrate the relationship between 
the Number of RIS elements and the Transmission Rate 
(MBPs). At 10 elements, the proposed model achieves 1 
Mbps, lower than DSSVAA (20 Mbps) and DDFFCE (90 
Mbps). Finally, at 100 elements, the proposed model attains 8 
Mbps, while DSSVAA and DDFFCE reach 90 Mbps and 100 
Mbps, respectively, shoeing that the proposed model achieves 
stable growth with efficient use of RIS elements. 

d. No. of RIS elements Vs Spatial correlation (Mbps) 

The number of RIS elements increases, reflected signals 
experience more independent paths, resulting in reduced 
spatial correlation and improved channel diversity. This 
reduction enhances and handles multipath propagation that 
increases effective data transmission rate (Mbps). 

                       𝜌𝜌 = 𝑒𝑒
𝑑𝑑 𝑁𝑁
𝜆𝜆                                                     (117) 

Where: 
• 𝜌𝜌: spatial Correlation coefficient  
• 𝑑𝑑: Spacing between RIS elements 
• 𝜆𝜆: Wavelength of the carrier signal 
• 𝑁𝑁: Number of RIS elements 

 
                Table 6 
No.of. RIS element vs Spatial correlation 

X-axis (No.of. RIS element) Y-axis spatial correlation (mbps) 

Proposed   DSSVAA DDFFCE 
10 0.6 4 10 
20 0.7 4.5 12 
50 0.8 5 14 
70 0.9 6      16 

100 0.95 9 20 

 

 

 
       Fig. 13 Number of RIS element vs Spatial correlation 
(Mbps) 
      In table (6) and Fig.13 represents the number of RIS 
elements increase, spatial correlation improves for all 
models, indicating better signal alignment and system 
performance. Initially, at 10 elements the proposed model 
records a correlation of 0.6 Mbps, much lower than 
DSSVAA (4 Mbps) and DDFFCE (10 Mbps). Finally, the 
number of increases to 100, the proposed method 
achieves 0.95 Mbps, showing stable and controlled 
correlation compared to DSSVAA (9 Mbps) and 
DDFFCE (20 Mbps). The proposed model maintains the 
low spatial correlation, ensuring efficient signal reflection 
and improved communication reliability. 

e. SNR vs Mean Squared Error 

Mean Squared Error (MSE) measures “the average 
squared difference between the estimated and the actual signal 
values. The SNR quantifies the strength of the desired signal 
compared to background noise. The SNR increases, the 
received signal becomes clearer and less corrupted by noise, 
leading to lower MSE.  

 
                                  

Table 7 
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SNR (dB) vs Mean Squared Error (MSE) 
X-axis (SNR (dB)) Y-axis Mean Squared Error (MSE) 

Proposed   DSSVAA DDFFCE 
40 1.75 × 10−6 2.00 × 10−6 3.15 × 10−6 
45 1.85 × 10−6 2.75 × 10−6 3.20 × 10−6 
50 1.89 × 10−6 2.85 × 10−6 3.25 × 10−6 
55 1.90 × 10−6 2.89 × 10−6    3.30× 10−6 
60 1.98 × 10−6 2.95 × 10−6 4.00 × 10−6 

 

        Fig. 14 SNR (dB)vs Mean Squared Error (MSE) 

In table (7) and Fig. 14 represent the variation of Mean 
Squared Error (MSE) with respect to SNR (dB). In 40 dB, the 
model attains an MSE of 1.75×10⁻⁶ (0.00000175), 
outperforming DSSVAA as 1×10⁻⁴ (0.00000200) and 
DDFFCE as 1×10⁻³ (0.00000315). As the SNR increases to 60 
dB, the method maintains a low MSE of 1.98×10⁻⁴ 
(0.00000198), while DSSVAA and DDFFCE exhibit higher 
errors of 1×10⁻³ (0.00000295) and 1×10⁻¹ (0.00000400), 
respectively. This demonstrates that the proposed model 
provides superior estimation accuracy, better noise resistance, 
and more stable performance under varying SNR conditions 
compared to the existing methods  

 
C. Research Summary 

Initially we design the mmWave network which consists 
of 20- User Equipment (UEs), 2- Base stations (BS), 1- 
MIMO-BS, 1- RIS and customized channel environment and 
parameters. Next, we perform data preprocessing to reduce 
noise and enhance accuracy by applying high-SNR MIMO-
MRC modeling technique, clustering algorithms, and filtering 
techniques to enable efficient feature extraction and improved 

data quality. Then, we perform Fast Alignment to quickly 
identify strong near-field regions, then apply HCSSP 
(Hierarchical Compressed Sensing with Sub-Partitioning) 
technique on those sub-regions to recover sparse channel 
paths. We perform (FL) based training for “hybrid 
beamforming”, where a Generative Adversarial Network 
(GAN) is trained on raytracing (RT) simulation data, and the 
base station (BS) aggregates user gradients in a decentralized 
manner without accessing raw data. Next, we estimate the 
channel by using SCOVEM (Score-Based Generative Model-
Enhanced Support Vector Machine with Bayesian 
Optimization for mmWave Fault Diagnosis) technique. Then, 
we enhance the data distribution, channel estimation and 
prediction by using the Score based Diffusion model 
technique. Finally, we plot performance metrics such as BER 
vs. SNR (dB), SNR (dB) vs. Spectral Efficiency (bits/s/Hz), 
Number of RIS elements vs. Transmission Rate (Mbps), 
Number of RIS elements vs. Spatial Correlation and SNR 
(dB) vs. MSE (Mean Squared Error. 

VI. CONCLUSION 

The proposed paper presents an efficient machine learning 
based approach for mmwave channel estimation and 
prediction. The proposed model integrates MIMO-MRC 
preprocessing, federated learning, and score based generative 
model for robustness. The use of MIMO-MRC resulted in 
high signal reliability under noisy condition. By incorporating 
the Coordinated Multiple Point (CoMP) model, signal 
detection between transmitter and receiver. The federated 
learning framework improved training efficiency while 
preserving data security. The hierarchical compressed sensing 
with spatio- temporal Sub partitioning ensured accurate near 
and far filed modelling. The Score based generative model 
enhanced noise resilience and channel estimation accuracy. 
The model achieved higher transmission rates and lower 
spatial correlation through optimized RIS integration. Overall, 
the proposed hybrid system achieved superior robustness and 
scalability for mmwave communication. In future, the work 
can be extended to real time mmwave environments with 
dynamic user mobility. Further optimization using deep 
reinforcement learning can enhance adaptive beamforming 
and prediction accuracy. Integration with 6G intelligent 
reflecting surfaces and edge computing will enable ultra-
reliable, low latency communication. 
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