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Abstract- The massive growth of the wireless communication
technology, especially in 5G and beyond, which is used for the
efficient and channel modelling for estimation and prediction.
The Channel Modeling, works on the statistical approach, it is
hard to analyse the dynamic and complex behavior of the
channel modelling. Millimeter wave (mmwave) channel
modelling operates from the 30-300 GHZ in high bandwidth,
highly efficient and high data rate as well as robustness.
However, mmWave signals face challenges such as low SNR
(signal to noise ratio), Impact on Near and Far field model,
robustness issue, Lack of signal detection, inefficient training. To
address these challenges, using score based generative model for
robustness in channel estimation, MIMO-MRC (Multiple input
and multiple output Maximal ratio combining) for High SNR and
federated based learning is used for training, using Coordinated
multiple point (CoMP) Model for signal detection, Fast alignment
algorithm provides far and near field model to execute accurate
value. The focus on the channel estimation and prediction,
mmwave channel model use of machine learning techniques.
Mmwave channel modelling is used to estimate and predict the
channel. The propose paper offers some advantages to handling
the issues in the communication system such as optimising
beamforming, Estimation of CSI (Channel State Information).
The proposed model result as Robust, scalability and highly
efficient for future wireless network technology when combining
these techniques with data. The results shows that our proposed
method outperforms significantly mmwave channel prediction
and estimation used metrics as BER (Bit Error Rate), Spectral
efficiency, Transmission rate, spatial correlation, MSE (Mean
Squared Error), SNR.

Index Terms- High SNR, Near and Far field Model, MIMO-MRC,
Coordinated multiple point (CoMP), Fast alignment algorithm,
Channel estimation and prediction.

I. INTRODUCTION
The Mmwave in Multiple-input Multiple-output that led to
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analysing the massive connectivity high data rate and ultra
reliable low-latency communications [1]. The massive
mmwave Multiple-input Multiple-output (MIMO) technology
can used to increase data transmission rate with higher
bandwidth and higher spectral efficiency, emerging as an
essential technology for the sixth generation (6G) wireless
communication [2]. ML (Machine learning) is used to improve
accuracy of detection in physical-layer and new and better
waveforms, and reduce complexity of specific parts of
receiver algorithms [3]. Reconfigurable intelligent surface
(RIS) is an important technique, from Multiple-input Multiple-
output (MIMO), mmwave, and provide communications, for
future networks (6G) [4]. A Deep unfolding Network is
proposed to reduce the computational time in a practical
application and used to improve the robustness The
constructed deep neural network can be reconstructed that
executes faster and more accurate in the interpretable structure
of few layers than the iterative algorithm [5]. The probability
of transition on Angle-of-Arrival (AoA) and Angle-of-
Departure (AoD), a semi-exhaustive search algorithm for
beam alignment [6]. mmWave communications are considered
a high-potential solution that can improve available bandwidth
and spectral efficiency. The frequency band for mmwave
ranges from 30 GHz to 300 GHz and supports communication
with high transmission rates and ultra-low delay [7]. The
simple channel estimation techniques, like LS estimators,
which may not execute high-quality channel estimates and low
SNR [8]. ML techniques such as Neural Networks (NNs), is
used to acquire statistical channel models that tackle the
challenges of conventional channel modeling systems [9].
Channel Estimation (CE) is an essential process in modern
wireless communication systems, enabling accurate signal
detection and robust system optimization [10]. The traditional
LLMSE and LS estimation methods are compared to the DNN
estimator performance in terms of Bit error rate versus SNR
and it can be estimated as channel errors [11]. Channel
estimation schemes that accomplish high level accuracy
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compared to MMSE estimator, while also reducing » Challenging in Robustness: However, there is no
complexity and enhanced robustness to the imperfect robustness to estimate the channel in the multi sub band

knowledge of channel statistics [12]. The adaptive filtering
that provides advancement in mmwave communication
technologies and used to enhances the estimation channel
performance [13]. The Deep learning-based estimation have
been utilizing to reduces the issues and increase the traditional
algorithm performance such as signal detection channel
estimation and prediction and end-to-end transceiver design
[14]. The high directivity is achieved in massive MIMO
systems, which often require the need for highlighting the
efficient implementation and more complex signal processing
techniques [15]. Loss of valuable information about the
estimated channel inevitably impacts the estimation
performance, particularly at lower SNR regions where the
channel noise is usually severe [16]. For Far-field channel
estimation, channel sparsity is considered as angle domain,
where signals are used to pointed in a particular direction.
Whereas, near-field channel estimation considers aperture
arrays will experience spherical wavefronts and the channel
sparsity is in polar domain [17]. The RIS channel estimation
as a maximum likelihood (ML) problem and uses an
expectation maximization (EM) algorithm for accurate
estimation with reduced training overhead, demonstrating
significant improvements over current approaches [18]. The
antenna array can be categorized into many sub-arrays, and
that can be estimated independently and is used to reduce the
complexity. The angles of arrival/departure (AoAs/AoDs) are
based on gradient method. The results show off-grid errors.
[19]. CSI is important for ensuring reliable signal transmission
and reception MIMO systems and is primarily used to design
the efficient beamforming techniques [20]. To overcome from
these challenges, the proposed model presents MIMO-MRC
model, Fast alignment algorithm, federated training, DE-MS
QP and CoMP model.

A. Motivation & Objectives

The present issues are Low performance of SNR, Impact
on Near field and Far field model, Challenging in Robustness,
decreasing training, Lack of signal detection
» Low performance of SNR: However, the existing

method to improve the SNR (signal Noise Ratio). The low

SNR will result high noise than the signal.

»> Impact on Near and Far field Model: Nevertheless, the
3D localization in RIS panel is feasible with near field
model and not feasible with far field model. It is essential
RIS single panel is effective with Far Field model also.

quasi perfect and data embedded (DE-MS QP) techniques.
The multi sub band quasi perfect and data embedded
model which produces compressed sensing and
communication and is used to estimate the channel but
need to improve robustness

» Decreasing Training: The channel prediction, this
research paper needs to train the model in advance.
However, the training is low.

» Lack of Signal Detection: The signal detection between
transmitter and receiver is important for channel
estimation and prediction. However, SC attention
Network are used to estimate the channel under noise
condition but it has to improve the signal detection

The primary objective of this research is mmwave
channel estimation and prediction based on machine learning
particular objectives of this study are as follows,

» To Develop High SNR where the noise is stronger than
the signal.

» To Utilize novel methods, for training the federated
learning method are executed

» To develop novel method for near and far field model get
feasible with RIS technology.

» To Apply novel methods, provides Robustness for
channel estimation and prediction

» To Design the model for signal detection between
transmitter and receiver

B. Research Contribution

The highlights of this research work are illustrated below;

To improve High SNR, use the Minimally tuned (MIMO-
MRC) method.

To increase training the federated training method is used
Near and Far field model executed RIS panel where as,
the Fast Alignment Algorithm introduced

To Improve robustness of channel estimation, Multi sub
band quasi perfect and data embedded (DE-MS QP)
model is introduced.

» To detect the signal between transmitter and receiver, the
Coordinated multiple point (CoMP) model is introduced

vV VYV V

C. Paper organization
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The remainder of this research as follows: Provides an
explanation of Section II of a survey of previous work. In
section III, states that main issue with the current methods. In
section IV, describes the system model. Then in Section V
presents study approach for suggested model, appropriate
diagrams, mathematical representations and pseudocode. In
Section VI, the suggested and current methodology is
compared and the experimental results are explained. The
proposed method conclusion and future work is explained in
Section VII.

II. LITERATURE SURVEY

The Channel estimate is a crucial operation that
significantly impacts end-to-end system performance used
MIMO digital communication. The MIMO, Score based
generative model used for Channel Estimation. To improve
estimations given measurements of a signal, to determine the
gradient of a distribution logarithm, a model is well trained.
However, the Score based model have high inference
complexity of posterior sampling with Langevin dynamics
[21]. The Research paper examines how wobbling affects the
Doppler effect of a mmwave wireless channel connecting
ground node and hovering RW UAV. The results show that
Amplitude and then Frequency of the ACF oscillation in
mmwave link are affected by various RW UAV wobbling
patterns. Nevertheless, tangential velocity will produce the
Doppler effect and the chance of the Line Of Sight (LoS)link
will drop when UAV at low altitude [22]. In this Research,
they propose Deep Learning for channel estimation in MIMO
system. Convolutional Neural network (CNN) is a Channel
estimation process where input and output data which can be
referred as H neural network (HNN). HNN which is used to
generate the channel information of received signal and it also
find connection between channel and received data. The
Hopefield Neural network (HNN) algorithm gives channel
estimation accurately. However, the large amount of data not
collected for channel estimation in deep learning [23]. This
research paper proposed orthogonal frequency-division
multiplexing (OFDM) systems of compressed-sensing-assisted
index modulation, termed as OFDM-CSIM, communicating
over mmwave channels. The DNN achieve high throughput
than the K-nearest algorithm. The Deep Neural Network
(DNN) and Sparse Bayesian learning (SBL) provides better
performance and accuracy. However, DNN and SBL decrease
the complexity of channel estimation by using received signals
as the feature set [24]. The support of the interior channel
model simulator, which was developed for the generation of
grid-wise channel data (Path Grid Data), a marked

Additionally, developing grid-wise channel data (Path Grid
Data) with a use of the internal channel model simulator (CP
SQDSIM). The 3D model that cannot implement all scattering
object during the measurement time [25]. The mmwave in
multiple-input multiple output (MIMO), significantly reduces
number of Radio frequency (RF) chains by using antenna
array. The proposed GM-LAMP results better result on the
channel estimation. However, the Gaussian mixture LAMP
(GM-LAMP) is applied for improve channel estimation [26].
In MIMO system, the “GPODE” is a channel prediction
method. The GPODE 1is a combination of Genetic
programming (GP) with higher order differential equation
(HODE). The GPODE method gives high accuracy in channel
prediction. In GPODE method, which is used for channel
prediction. For long term prediction, this research uses online
and offline learning. However, Online training gives more
accuracy than the offline training [27]. Federated Learning for
channel estimation and CNN is trained on the dataset of the
users. Federated Learning provides channel estimation
performance as well as channel prediction performance.
However, to develop compression-based techniques for
training the data and provide model parameters to reduce the
communication overhead [28]. These Research paper presents
Deep Neural Network (DNN) which is used for prediction in
Angle of Arrival, Angle of Departure. Dynamic window
approach (DWA) which is used to estimate location
information of user in User equipment (UE), input parameter
is well trained “DNN” to optimise the prediction of
“AAOA/AAOD” and “EAOA/EAOD”. There is still chance to
improve the channel prediction performance using DNN
(Deep Neural Network) with AOA and AOD [29]. The Deep
learning compressed sensing (DLCS) is analysed to Estimate
the channel. The Deep learning quantized phase (DLQP)
hybrid precoder design method is used to develop channel
estimation. A Deployment hybrid precoding neural network
(DHPNN) are presented by changing approximation of ideal
phase quantization and output as the DHPNN is analog
precoding vector matrix. The proposed DLQP method, there is
still chance to develop the Channel estimation and hybrid
precoding design for wideband Multi-user mmWave massive
MIMO transmission adopting deep learning [30]. DNN-based
beam training (DBT) schemes are used to estimate the channel
Based on the chances vector, the original DBT (ODBT) use
DNN to identify beam combination that best matches
mmWave channel longest channel path. However, ODBT and
EDBT schemes improve DNN framework and preprocessing
method for received signal before DNN processing [31].

This Research paper presents Low complexity Machine
learning to reduce reference signal (RS) overhead, latency,
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and power consumption. The result of the proposed system
shows that prediction accuracy and spatial correlational. But
there is chance to improve the mmwave beam prediction in
machine learning based signal RS overhead [32]. In these
research paper, proposed efficient channel estimation for the
double-IRS aided Multi-user and the MIMO communication
system to solve the cascaded CSI in both single double
Reflection link. The performance provided joint training
reflection design and channel estimation scheme with double
IRS, compared to another benchmark scheme. However, the
most generic Multi Assisted Multi-user communication
system involves multiple paths of signal reflection, requiring
additional intricately designed systems that use multi-IRS
deployment, joint passive beamforming, and channel
estimation [33]. The optimization of wireless channels and
enhance the network as one, Reconfigurable intelligent surface

assisted multi-user mmwave complex MIMO systems use the
wideband cascaded channels and the minimal training latency.
Nevertheless, the standard Compressed Sensing algorithms
still need a significant amount of pilot cost in order to confirm
estimation accuracy [34]. RIS-assisted Orthogonal frequency
division multiplexing (OFDM) and Multi-user multiple-input
multiple-output (MIMO) communication systems determine
cascaded channels with high dimensionality and advanced
statistical ~ analysis. The  proposed  Super-resolution
convolutional neural network (SRCNN) and Denoising
convolutional neural network (DnCNN) results good
performance as well as accuracy of channel estimation. The
intricate Gaussian distribution is not used by the cascaded
channel. The ideal Minimum means square error (MMSE)
estimator, have several integrals implementation, cannot be
derived in this form [35]. TABLE 1 represents summary of

(RIS) and assisted wireless system need precise CSI  existing
performance. In this paper, data-driven method that takes work.
beam squint into account is generated for predicting RIS-

TABLE 1

SUMMARY OF EXISTING WORKS

References | Objectives Algorithms or methods used Limitations

[21] A Score based generative model for posterior | Score based Generative model for e  Limited by the Score based model
sampling and represents a new research direction | channel estimation have “high inference complexity” of
for MIMO channel estimation. posterior sampling with “Langevin

dynamics”.

[22] RW UAV wobbling patterns impact the amplitude | Doppler Effect for the process of e  The Line of Sight is dropped when
and frequency of ACF oscillation in the mmwave | RW UAV. UAV is low altitude.

RW UAV A2G link.

[23] HNN is used to analyse the channel information of | Hopefield Neural network (HNN) e  The large amount of data is not
received signal and also find the connection | algorithm for channel estimation collected yet for the channel
between channel and received signal. accurately. estimation.

[24] orthogonal frequency-division multiplexing | OFDM and SBL for channel . Complexity is increased in OFDM
(OFDM) communicating over mmwave and sparse | estimation accurately. and SBL model.

Bayesian learning (SBL) for accurate channel state
information.

[25] Developing grid-wise channel data (Path Grid Data) | Q-D channel model framework for e The 3D model that cannot implement
with a use of the internal channel model simulator. channel characteristics in mmwave. all scattering object during the

measurement time.

[26] Online and Offline training is used to generate the | GPODE method is used for training e  Limited by Online training is more
long-term prediction. accurate than the offline training.

[27] The model is developed for fast channel estimation | Federated Learning for channel . Limited by the model reduce the
using CNN estimation and channel prediction communication overhead.

performance.

[28] Design to reduce the energy consumption and | ES-MPTCP, energy saving . The model parameter is reducing the
provide high throughput scheduling system Communication overhead

[29] To develop for high robustness channel estimation. Deep Neural Network (DNN) is used e There is still chance to develop the

for prediction of channel. channel prediction performance

[30] The model has better channel estimation | Deep learning quantized phase . There is still chance to develop the
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performance and has high spectral efficiency with | (DLQP) is used for better spectral channel estimation and hybrid
low resolution of phase shifters. efficiency precoding design
[31] The model proposed to reduce the beam training | ODBT, used to predict the beam e The model takes longer time for beam
overhead and improved signal coverage. combination. EDBT, wused for training.
additional beam training.
[32] The model provides low computational complexity | Low complexity Machine learning e  There is chance to improve the
and achieves beam prediction accuracy. design for reduction in RS overhead. mmwave beam prediction in machine
learning.
[33] The effectives of the proposed channel estimation | Double-IRS aided multi-user MIMO e The most generic Multi IRS involves
scheme and Joint training reflection design. system for maximize the training multiple paths of signal reflection,
requiring additional intricately
designed systems.
[34] The data driven approach for estimated the wide | Data-driven  cascaded  channel e  The compressed sensing algorithm
band channel estimation. estimation for denoising neural needs an amount of pilot in order to
network. confirm the estimation accuracy.
[35] To improve the features and estimates the channel | Super-resolution convolutional e  The intricate Gaussian distribution is
matrix by using pilot locations. neural network (SRCNN) used for not used by the cascaded channel.
accuracy of channel estimation.

III. PROBLEM STATEMENT

The numerous existing works and their associated
responses are arranged in sequence of publication in this
section. Furthermore, this study offers the research solutions
for the mentioned issues.

Specific research work & Issues: Authors in [36]
research paper focuses their affordability and ease of use,
Directional scanning sounding (DSS) and Virtual antenna
array (VAA) sounding are two widely used models. DSS are
mechanically movable omni directional antenna and VAA is a
rotatable directional antenna. A new VAA framework based
on directional antennas along with the related beamforming
algorithm. Unlike the traditional VAA, it is a solution that can
be used for frequency bands and polarizations. This research
paper accomplishes High angular resolution for mmwave
channel measurement without extending time need for
measurement. The article [37] presents in RIS, the spherical
wavefront propagation in the subTHz systems Near field. A
calculated second-order Fresnel approximation of the Near-
field channel model propose Near-field channel estimation and
localization (NF-JCEL) model. The orthogonal matching
pursuit (OMP) model, channel attenuation coefficients, and
the simple one-dimensional search can be used to estimate the
UE distance. The NF-JCEL method can achieve higher
resolution accuracy when compared to the traditional far field
approach. Some of the problem detected in these papers are:

e There are still chances to suppress the side lobes and
increase the SNR . In Low SNR, the noise is stronger
than Signal.

e However, near and far-field models describe the
behavior of electromagnetic fields at different
distances from a radiating source, like an antenna.
However, 3D localization using a single RIS panel is
feasible with the near-field model but not with the
far-field model.

According to this study [38], Joint radar sensing and
communication (JRC) operate in a both function such as
Time-domain duplex (TDD) and Multi sub band quasi perfect
(MS-QP-TDD) and MS-QP is introduced in target sensing, it
will achieve target range and estimation of velocity. To use
analog to digital convertor for the detection in sequence. By
extended “MS-QP”, data embedded “MS-QP (DE-MS QP)”
waveform is created, producing null frequency point on every
sub band which is used for the data transmission. This
research proposed “DE-MS-QP” the waveform gives
interference free sensing and communication. The author
proposes [39] Unmanned aerial vehicle (UAV) mmWave
provides high data rate transmission in wireless network. The
3D scattering space, includes 3D velocity, 3D antenna array,
and 3D rotation. A UAV-to-Vehicle (U2V) and (ML)
integrated mm Wave channel model is then proposed. The
“back propagation” established neural network and Generative
adversarial network (GAN), derived using enormous ray-
tracing (RT) simulations to training data set. The U2V
mmWave channel is generated under 28 Ghz. The proposed
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paper presents [40] RIS is a Reconfigurable Intelligent Surface,
energy efficient option used in Wireless Communication
Networks. Double-RIS aided MIMO have some challenges
where large amount of antenna at base station. Skip-
connection attention (SC-attention) network that optimize self-
attention layer and improve the channel estimation extremely
under noisy environment. Normalized mean square error
(NMSE) accuracy performance can be successfully increased
with SC-attention networks it provides an accurate channel
Estimation.

Several issues identified in this research include:

» However, the multi sub band quasi perfect and data
embedded “(DE-MS QP)” waveform design is no
robust to estimate the channel.

» However, ML networks in the framework need to
trained in advance and also need to be pre-processed.

» However Nevertheless, the SC attention network has
to improve the Signal detection. Signal detection is
important for the channel estimation and channel
prediction

Research solution: To overcome from these issues, in this
study proposes minimally tuned MIMO-MRC model exhibits
asymptotic (high SNR) reductions in both uplink and
downlink scenarioS. The hybrid Fast alignment algorithm with
Sub array partition framework and Hierarchical compressed
sensing results Feasible in RIS panel in both near and Far field
channel model and novelty as “Hierarchical Compressed
Sensing with Spatial-Temporal Sub-Partitioning for Ultra-Fast
mmWave Beam Alignment”. The hybrid Support vector
machine with Score based generative model and bayes
optimization to generate robustness in channel estimation and

novelty as “SCOVEM: Score-Based Generative Model-
Enhanced Support Vector Machine with Bayesian
Optimization for mmWave Fault Diagnosis”. Federated
learning (FL) based framework for hybrid beamforming,
where model trained and performed at the Base Station and
collected gradients from the users. The Coordinated multiple
point (CoMP) transmission is typically used in ultra-dense
SCN for better the performance target sensing. Using “CoMP”
and SCN to detect the received signal

IV. PROPOSED METHODOLOGY

The proposed methodology is used to estimate channel
prediction and estimation using Machine Learning algorithm.
The proposed method overall architecture is shown in (Fig. 1).
Here the proposed methodology was detailed discussed below,

System Model

Data Pre processing

Near and Far field model

Federated Based Training

Machine Learning based Robust channel estimation
Score based Generative model

YVVVVYVY
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DATA PRE-

PROCESSING{HIGH SNR)
NEAR AND FAR FIELD

MODEL{(HSSTU MODEL)

— .
t —» e AN |

FEDERATED BASED
TRAINING

1

Fig. 1 Overall Proposed Architecture

A. System Model

A 5G-capable wireless communication device can be used
by end-user to access the network. UEs are equipped with
mmWave transceiver and support beamforming capabilities to
communicate with the base stations. It can be static or mobile,
and their channel characteristics are influenced by factors such
as mobility, location, and the environmental obstacles. A fixed
infrastructure node that provides wireless connectivity to UEs
within its coverage area. The BS operates in the mmWave
frequency band (30-300 GHz) and then uses directional
antennas to establish high-data-rate link. It supports only
communication and long-range data transmission with low
latency. The base station equipped with multiple antennas to

enable continuous transmission and reception of multiple data
stream. “MIMO-BS” enhances spectral efficiency, and also
supports spatial multiplexing, and improves link reliability
through diversity gains. It performs a critical role in capturing
CSI and provide accurate channel estimation and prediction.
The RIS deployed to enhance signal coverage, mitigate
blockages, and used to improve channel conditions by
intelligently reflecting incident signals toward intended UEs.
It supports both near-field and far-field propagation models. In
a Channel Environment, the propagation environment such as
trees, buildings and user movement. The channel exhibits
characteristics like high path loss, multi-path fading, Doppler
effects, and spatial-temporal variations, which are analysed
and captured through Ray-tracing simulation measurement. In
mmwave channel modelling process represents the physical
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propagation behaviour between the Base station (BS) and user
equipment.

Ryl aa, (0])af (6)) (1)

H= L Li=1

Where H is the “complex channel matrix”, N, and N,
denote the number of transmit and receiver antennas
respectively, L is the total number of propagation paths,
a, represents the complex gain of the [*" paths, a!(6}) and
a,(0]) are the transmit and receive array response vectors
corresponding to the AOD and AOA. For a uniform linear
array (ULA) configuration, the transmit steering vector is
given as

a.(0)

1 2nd . 2nd, .
_ ——sin(0) ——2sin(8)
—[1,e’7 el 7 .

LT W@ T oy

t

a,(0) is a transmitting array steering vector, Where 4 is
the carrier wavelength and N, is the Number of transmit

antenna.fd is an angle of departure. \/% is a normalization of
t

power unit and e/®) is a complex exponential representing
phase. d is the antenna spacing and T is a Transpose. The
complex gain a; is represented as

= B!, B = €)

c(—

Where f; denotes the power gain affected by path loss, C,
is a reference constant at distance d, = 1m,y is the path loss
exponent, d; is the distance of the I, path, and ¢; is the phase
uniformly distributed in [0,27]. The received signal model is
expressed as

y=Hx+n 4)

Where y denotes the received signal vector, x represents
the transmitted signal and n~CN(0, 621) is the additive white
Gaussian noise with variance o%. H denotes channel effect.
The effective post- processing SNR using MIMO-MRC
combining is given as

SNR,,, = lrnrln

e )

Where F and w denotes the transmit precoder and receive
combiner respectively, and p, represents the transmitted
power. 2 is a noise variance. For dynamic environments, the
time varying mmwave channel due to mobility is modelled as

H(t) = Y, aie/>™pita, (6])al (6) 6)

Where fp, = %cos (6, — 6]) represents the doppler

frequency shift for the [*"path, with v being the velocity of the

UE and 6, being the direction of motion. Multiple rays are
grouped into spatial clusters, and the overall clustered channel
is defined as

N¢Ny

H= oo Y apar(B5)al (05,) (7)

Where N, is the number of clusters, N, is the number of
sub paths per cluster and ., is the complex gain of the pth
sub path within the c*® cluster. For near and far field model

conditions (Within Rayleigh distance), the wavefront
curvature must be considered, and the channel becomes

L
_ E 1
Hyr = ae
1=1

Where 73, ,,; denotes the propagation distance between the
n'" transmit and m‘" receive antennas through [*" path,
capturing spherical wave propagation. When a Reconfigurable
Intelligent Surface (RIS) assists the transmission, the channel
can be expressed as

Tmnl (8)

Hpis = Hpr @PHgy €))

Where Hgp represents the BS to RIS channel, Hgy

denotes the RIS-to-UE channel and o =
diag((e/?1,e/?2, ..., e PNr)

is the diagonal matrix of adjustable reflection phase shifts for
the Nz RIS elements. The composite effective end-to-end
channel is therefore

Heyr = Hpy + Hpr ®PHgy (10)

Where Hgy is the direct BS-UE channel. The degree of
spatial correlation between antenna elements is given by
E[h;h]]
E[Ih;|?]E[Ih;1?]

(In

[h;h7] are the complex channel gains. \/E[| h; I2]E[l h; I?]
normalizes the correlation, so that p;; is bounded between the
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0 and 1. E is the average random variable. Where p;;
measures the correlation between channel vectors
corresponding to antenna i and j. The estimation performance

of the channel is evaluated through “Mean squared error
(MSE)” defined as

MSE = E[ll H— H |I12] (12)

Where H is the estimated channel matrix obtained by the
machine learning model. The Fis a Frobenius norm, which is
like the Euclidean norm for matrices. The spectral efficiency
is defined by

n = log , det (Iy, + Pe

Neo?

HHH) (13)

The n is a spectral efficiency and H¥ is a Hermitian
transpose of H . I is an identity matrix of size N, X N; . P; is

the total transmitting power. det (I, +NP;2 HH?) is the
t

determinant of a matrix. The bit error rate (BER)
corresponding to modulation order M and SNR y can be
estimated by

BER = Q( /2ysin 2() (14)

Where Q denotes the Gaussian Q-function. sin® (%) is a

minimum distance between the points. Through this
comprehensive channel model, the mmwave environment is
mathematically, enabling accurate estimation and prediction
using the subsequent machine learning based methods such as
MIMO-MRC preprocessing, HCSSP channel recovery,
federated learning-based training and SCOVEM based
prediction.
B. Data Preprocessing

Data pre-processing is used to extract the data and remove
the noise. The important performance of pre-processing is
Reducing noise, enabling feature extraction, improving
efficiency and enhancing accuracy. By using high SNR, it will
reduce the noise MIMO-MRC (Multiple input and multiple
output Maximal ratio combining) model exhibits asymptotic
(high SNR). Feature Engineering makes the raw data into
more interpretable data. To reduce the noise, the clustering
algorithm are used to group nearby points that likely belong to
the same object. Filtering techniques, such as thresholding or
statistical outlier removal, are also applied to remove noise
and improve the quality of the point cloud. In Fig. 2 Data
preprocessing model is shown Narrowband MIMO baseband
receives model (matrix form)

DATA PREPROCESSING
REDUCE NOISE, ENABLES FEATURE
EXTRACTION, IMPROVES ACCURACY

RAW DATA

FEATURE ENGINEERING NARROWBAND MIMO

TRANSFORMS RAW DATA BASEBAND RECEIVE
INTO INTERPRETABLE MODEL

FEATURES

NOISE REDUCTION
USING MIMO-MRC MODEL

FILTERING TECHNIQUES
(THRESHOLDING /OUTLIER
REMOVAL)

REFINED DATA
INTERPRETABLE
FEATURES

Fig. 2 Data preprocessing
y=Hx+n (15)

y € CV is the received vector, H € Cjj is the MIMO channel
matrix, x € CY , the transmitted symbol vector, and
n~CN(0,621) AWGN. MIMO-MRC focuses on single
stream transmission or combining to maximize the post
combiner SNR. The single stream transmits using beam
forming vector f.

2
x=fs, |Ifll"=1 (16)
scalar symbols s is pre coded by unit norm beam former
f € Cy. Linear combiner output (scalar observation)

z=wly=wlHf, + wyn

7

The w is a combine vector and y is received signal
vector. f; , transmit beamforming and n is the noise vector.
wy n is the desired signal after combing with w , affecting
SNR and w? Hf, is the desired signal after combining with
w .Receive combiner w € Cy produces scalar z . MRC
(Maximum Ratio combining) chooses w to maximize SNR.
MRC optimal combiner for known channel.

Wure = Kyr (18)

Where k is a scalar normalization. In single stream

transmitted on F, the receive MRC weights match the
effective receive steering vector HF. The post combiner SNR
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SNR = Wil e (19)
ailwll,
SNR after linear combiner w with transmit power p;.

The MRC maximum SNR (choose w = Hf)
Hf P
SNRype = U—%t
(20)

The numerator becomes squared norm of effective receive
vector; this realizes maximal SNR for that f. Optimal transmit
beamformer under full CSI. It is a “right singular vector” (v,)
corresponding to largest singular value of H. MRC SNR with
SVD beamforming (closed form)

2
SNRyfre =75 @1)

o, is the largest singular value of H . This shows
equivalence to strongest spatial eigenmode. Effective array
again (diversity+ beamforming)

2
Garray = ||Hf|| ZiV:rl hflf|2
(22)

hf is the i th receive antenna row the expression
decomposes array gain into per receiver contributions. Ggrray
is the array gain and N, is the number of received antenna.
The SNR under independent Rayleigh per antenna channels
(MRC with equal power per transmit antenna). If Hf has
elements CN (0, o) then,

Pt

SNRyrc = ] lgil?
(23)

MRC sums per branch SNR; for Rayleigh fading each
|g;|? is exponential giving gamma distribution of the sum

diversity order. N is the number of transmitted antennas.

Y = peog /oy
(24)

y represents the ratio of received “SNR” power. agz

denotes average channel power and 62 .The outage
probability for threshold y,

1
4(1+y)

Pout (o) = Pely < vo} = 1 — e 235120 (57) 25)

P{y <y} denotes formal definition of outage that has

chance SNR is less than the required y,, minimum SNR
required to achieve the target performance.

N¢—1 1
Zi=o (20 (4(1+y)
order. The expression may be given via MGF integration;
above is representative closed form (can be simplified or
expressed via confluent hypergeometric functions). It shows
rapid BER improvement with N,..High SNR (}) asymptotic
SER slope (diversity order)

)represents the cumulative -effective

SER(y)ay, asy —b (26)

MRC achieves full diversity N, error decays with SNR
exponent equal to number of combining branches. y,, denotes
normalized SNR term. Effective SNR after preprocessing
whitening normalization whiten input covariances R, =
Elyy"]

y =R, H=R,1\2H 27
R, is a positive semi definite Hermitian Matrix. Whitening
reduces colored noise effects or spatial interreference;
subsequent MRC on H yields corrected SNR. Preprocessing
increases effective SNR when interference / noise coloring
exists. The principal component Analysis (PCA) denoising
(rank -r truncation)

Y, = U, UHY (28)

Where Y is received training snapshot matrix, U,
first r principal eigenvectors; Y,. is the projected or reduced -
rank version of the received signal. U,UX is a “projection
matrix” onto subspace spanned by the columns of
U,., improving SNR before MRC. The MMSE prefilter that
maximizes SNR in presence of Interference R;

Wymss = c(Hy fEHY + R, + 021) " H; (29)

Wuymsk filter matrix, to apply at the receiver and ¢ denotes
the scaling constant. Hf is the “channel matrix” of the desired
signal. Where R; denotes the interference covariance matrix. I
is identity matrix. The MMSE combiner balances signal
enhancement and interference/noise  suppression. If
interference negligible MMSE=MRC. The channel estimation
model with estimation error

D =H+E, E[||EI|F] =02
(30)
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D is the estimated channel matrix and [||E ||F ] is a
frobenius norm squared. E models estimation error (MSE
02). Use Y for beamforming/combing; imperfect CSI reduces
MRC gain. SNR degradation due to channel estimation error

2
lYfl|"Pe
SNRyp ~ L P 31
eff 0721+Pt||EF||2 (1)
The estimation error acts like additional signal dependent
noise; the denominator increases by residual beamforming

leakage power P;||Ef ||2. The piolet length T, vs estimation
MSE (LS estimator, orthogonal pilots)

2 _ %%
of = (32)
The pilot power B, and T, orthogonal pilot symbols, LS
channel MSE decreases inversely with training energy; shows
trade-off between piolet overhead and CSI quality (hence
MRC effectiveness). The effective SNR gain from averaging
(data preprocessing); averaging L independent snapshots

Tavg = L, (33)

Temporal averaging of independent noise realizations
improves effective SNR by factor L; L, is a constant represent
the mean delay. used in preprocessing before combining. The
spatial correlational model

H = R.higR; (34)

The R, represents the received correlation matrix and R; ,
transmit correlation Matrix. h;; denotes Rayleigh channel
fading matrix. The post MRC mean and variance

P p?
Ely] = U—étr (Ress) Var(y) = o tr(RZss)
(35)

The practical quantized combiner/ phase shifter model
(finite resolution

Wq = QB(W)'QB(ejO) =€
(36)

w is the original beamforming /precoding vector. w, is the
quantized version applying B bit quantization. The
quantization function Qz(e’®) represents bit phase quantizer
on analog combining; e;is the quantized phase value and e/° is

a complex number on the unit circle. Finite resolution reduces
array gain include as multiplicative loss factor in SNR
expressions. Pseudocode for MIMO-MRC model is presented
in Algorithm 1

Algorithm 1: Multiple input and multiple output Maximal
ratio combining (MIMO-MRC) Model

1. Initialize system parameters ( Ty, R, RIS, 52, P;, N, N,.)

2. Acquire received baseband signal vector y = HX +n

3. Apply MIMO-MRC combining to maximize post-
combiner SNR

. . H
4. Compute optimal combiner w = m

5. Evaluate post combiner SNR = (lw”Hx|?)/(wHw a?)

6. Perform SVD of channel matrix H = UV to obtain
dominant eigenmode

7. Select transmit beamformer f =V, corresponding to
largest singular value

8. Compute effective array gain Arp = |h;|?

9. Estimate branch SNRs under Rayleigh fading and
compute diversity gain

10. Calculate outage probability P,,; = P(SNR < y;p,)

11. Normalize received signal using whitening matrix R =
n to remove the noise.

12. Apply PCA denoising:Y, = U,Y

13. Compute MMSE filter W50

14. Estimate channel H = H + AH and compute estimation
error MSE = ||AH||®

15. Evaluate SNR degradation due to estimation error

16. Optimize pilot length 7, and PP to minimise channel
MSE.

17. Apply temporal averaging over L snapshots to enhance

18. Compute spatial correlation metrics R,,and R,

19. Quantize beamforming phase: 6, = Q(6) with bit
resolution

20. Output pre-processed data Y clean, enhanced channel
matrix H and effective SNR.

H

C. Near and far field model

The novelty “Hierarchical Compressed Sensing with
Spatio-Temporal Sub-Partitioning for Ultra-Fast
mmWave Beam Alignment “is a combine of fast alignment,
sub partition framework and hierarchical compressed sensing
for providing “near and far field model” accurately. Wireless
communication, the “Near-field and Far-field” models
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describe different region of an electromagnetic field Where, sum of L discrete paths with complex gain «a;,

propagating from an antenna. The far-field is a region where
the radiation pattern is stable and the power decays as inverse
square of the distance. The near-field, closer to antenna, is
more complex, with both reactive and radiative components.
The proposed methodology using a Fast alignment and sub-
partition framework and hierarchical compressed sensing
is designed to address accuracy in RIS plane of both near and
far field model. The Fast alignment algorithm works as coarse
alignment which quickly identify the primary near-field
regions of interest. By doing this, the system avoids spending
time on areas with very low signal strength and can access RIS
technology for far and near field model. In Sub partition
framework, the measurement area is divided into smaller,
more manageable sub-regions. To combine of this technique
the novelty as “Hierarchical Compressed Sensing with Spatio-
Temporal Sub-Partitioning for Ultra-Fast mmWave Beam
Alignment” The sub-partitions can be dynamically adjusted
based on the initial coarse alignment results, capturing the
features of both near and far field model in RIS phase shifts.
Hierarchical Compresses technique builds on efficiency
gained from the sub-partition framework by applying
compressed sensing (CS) in a hierarchical manner. “. In fig. 3
the “Near and Far field model” is executed. The hybrid of the
fast alignment algorithm and sub partition framework and
hierarchical compressed sensing is used to get feasible in RIS
technology in both “Near and Far field model”. The Fresnel
(Rayleigh) distance (near and far boundary

dp =22 (37)
Where distance dy separates near and far field model for an
antenna of maximum dimension D at wavelength X. For r <
dr near field effects matter; for r > dp planar approximation
holds. Friis path-loss (free space),

r= pthGr (L)z

41T

(38)

pr is a received power at distance r from transmit power p,
and gains G, G,. Use as a baseline for distance dependent
attenuation. Where p;, p, is a power and G;, G, is an antenna
gains, r (distance). General narrowband MIMO baseband
channel (Multipath)

o Tl
H =Y aqe”?™e" a,(6,r)af (¢, 1)
(39

delay T;, receive/transmit array responses a,,al! that depend
on both direction and range 7;. Far field (planar wave) ULA
steering vector (transmit)

1

aff(p) = N (40)

The aff is a transmit array response for far field (FF)
transmission at angle of departure ¢ .Planar wave steering for
ULA with element spacing d. N, is a number of transmit
antennas in the array.

al (o, 1) = —~=I[e]”

JNt
(41)

The a¥F (@,7) is a “near field” transmit array response
vector. Where 7 is a propagation distance and [e]” is a phase
vector. The account for per element distance dependent phase
(spherical curvature). The second order Fresnel approximation
(Useful intermediate)

2

Xn
Apm T —Xn + 0 (42)

Taylor expansion of A, valid in Fresnel region; x,, is a
position of the n‘" antenna element. First two terms give
planar plus quadratic correction capturing curvature. Useful in
near mid field modelling.

H ~ A, (R,X)X AY (R, ) (43)

The A¥(R, ) is the transmit “array steering vector” or

matrix. A, (R, X) is the receive array steering vector or matrix.

Channel approximated by sparse coefficient matrix X over a

polar dictionary parameterized by discrete ranges R and angles
X. Compressed sensing forward measurement

y=@gx+n (44)

The measurement vector y collected by beam probing
matrix ¢ from sparse channel vector x with noise n. This is
the core equation for CS-based alignment and estimation in
each sub-partition. Hierarchical sparse model

x=xt+x% ||Ix!|0 < [|x2]|0 (45)
x! models coarse (few strong components, near field spots)

and x% models fine residuals. Restricted Isometry property
(RIP) requirements

1=8ollvll = llpvll = (A + 6 llvllo<k  (46)
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The “sensing matrix” ¢ must satisfy RIP to stably recover
k sparse signals, &, is RIP constant. v is a k sparse vector.
Mutual coherence (design metric)

[<@ipj>|

47
il flejll, @7

u(p) = max

. 2 .
Lower mutual coherence of a matrix ¢. ||¢;]| ||<p j|| isa
2

Euclidean norm of the columns and (¢;,¢;) is an inner
product between columns i and j and is used when designing
probing beams for fast alignment. Beam probing energy
allocation across sub partitions

Ys=1ms =M (43)

The total number of probe measurements M split among S
spatial sub partitions, with allocation weights mg proportional
to prior probability of energy in partition s . Coarse to fine
success probability (Bayes)

Pouce = 2. P(select s)P(fine success) (49)

Where pg,.. is an overall probability of success.
p(select s) is a probability that a particular strategy and
P(fine success | s) is a conditional probability of success
given that s was selected. Aligns coarse selection probability
and conditional fine success. Use to optimize probing
allocation my;. MIMO receive signal with beamformer w and
precoder f

y=wiHf s + whin (50)

Baseband scalar observation used in beam alignment
design. SNR after MRC combining

_ IwHHrP?

SNRMRC - 0_121

(51)
MRC maximum ratio combining SNR: used when
evaluating high SNR. MIMO-MRC behaviour,

1
Var(0) = ZSNR G2 (52)
lower bound on unbiased “Ao0A” estimate variance;
indicates the near field model curvature changes estimation
prediction. Range estimation

r=cT,T=£

c

(53)

T is a path delay, c is a speed of light and used to link polar
sparse dictionary range bins to physical distances. RIS
reflection model

Bmn=pPm 0=<pp<1
(54)

Where S, is the resulting weighted or scaled probability.
pm  1s a probability value associated with some event m.e is
an exponent could represent reliability factor, amplification.
Constraint 0 < p,, < 1 ensures that p,, is valid probability.
and RIS assisted path modification

RIS, | — 3™ BrnGm, (55)

The RIS is a “Reconfigurable intelligent surface (RIS)”.
is the index of a particular element or layer in the RIS. MRS
represents “Number of RIS elements”. g,,, is the gain or
channel coefficient from RIS element m to layer. where each
element applies amplitude p,, and phase. g,,; accounts for

geometry and element response. RIS phase optimization

max |wy (X" hihn ) |
(56)

The non convex optimization to choose RIS phases that
align reflected components in near field include distance
dependent phase in h; ,,,. The phase quantization

. 2n Qom
Pm =7 round ( -
(57)
The ¢,, is a phase shift and %ﬂ is a step size of each
quantized phase level. round (Q(’i) denotes to rounds the

2m
value to the nearest integer. The Q level quantizer for

hardware constrained RIS; include quantization error term in
analysis. Polar domain dictionary (Closed form for ULA
element n)

a, (o, 1) = exp ((—jzt7T Jr2 4+ x2 — 2rx, sin 45) (58)
explicit atom used to assemble A; (R, ¢)in (39); supports
joint angle range sparsity. Measurement noise model
(AWGN+ model mismatch)
n~cN(0,0% 1), Y =@x +n+ emismstacn (59)

The enismatcn to capture dictionary off grid or near field

approximation errors; use robust or off- grid recovery to
mitigate.
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alp +A @, r + Ar) = a(e,r) +:—; A +g—z Ar
(60)

The a(e,r) is an array steering vector. A, Ar is a small
da Oda
a¢’ or
a with respect to ¢ and r. Then the overall constrained
optimization for hierarchical sub partition framework fast
alignment

change in angle and distance. is a partial derivative of

min§||Y—9(x1+x2)||(>\1+>\2) (61)

Y represents the observed vector and x;,x, represents
the components or variables to estimate. X14+x2 is a
regularization parameter. Joint recovery that enforces coarse
support Scoarse from fast alignment for the strongest
components X, and x, captures fine residuals. The
pseudocode hybrid model of Fast alignment algorithm with
Partition framework is presented in Algorithm 2.

Algorithm 2: Fast alignment algorithm with Sub partition
Framework

1. Initialize antenna parameters (D,~, Tx, Rx, RIS)

2. Measure distance d between transmitter and reciver.
3. Compute Rayleigh Boundary r = 2D?/x

4. If d < R then> Near- Field Model

5. Else~> far-field Model

6. Initialize Fast alignment algorithm

7. Perform coarse beam scan—> identify strongest region
8. Divide RIS plane into sub- partitions (spatial cells)

9. For each sub-partition  do

10. Collect measurement vector

11. Apply compressed sensing recovery to estimateh;
12. Store recovered subchannel H;
13. End for

14. Combine {H, i} = From overall channel matrix hg;

15. Optimize RIS reflection phases ¢ to maximize received
power

16. Evaluate Mutual coherence u(¢) to ensure stable
recovery.

17. Reconstruct near/far field beam patterns via h,g

18. Calculate SNR and spatial correlation for each model.

19. Select Model (Near/ Far) with minimum MSE and higher
SNR.

20. Output final aligned channel estimate H,,, for RIS
assisted link.

l"
#
;

0"
A
O‘ 4
o+
.

R

—p» Near Field Model
Far field Model

Fig. 3 Near and Far field model

D. Federated based training

“Generative adversarial network “is used to train the
dataset from the ray-tracing (RT) simulation. “Generative
adversarial Network” that uses two competing neural
networks to generate new data. To perform better training, the
“Federated Learning” is used to train the data. The data is
collected from the users through the Base station in mmwave
channel modelling. Federated learning is a decentralized
machine learning technique where model is trained across
multiple devices or servers. In Fig.4, the federated based
training is shown. Let the central server initialize the model
parameter as
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Base Station(BS)/
Central Server

Global Model

Parameters(Wt) U(l;l“i::::;i
Model(Wt+1
4. Global
communication
v Round t
Gradient
1. Broadcast Global Aggregation(Fed .
Model(We) 7| erated - 2 L;’ °Sl IT”;“'“g
Averaging) 'L:c:la
\ Gradient
7 \ 4 Q
User User Equipment
Local Model
Equipment(UE) Wéopy ¢ 2(UE)
Local channel Local channel Local Channel
Data copy Data copy Data copy
Fig .4 Federated based training
wo = InitializeModel(6) (62)

Where w, € R® represents the initial weight vector of the
global model, and 6 denotes the initial configuration of model
parameters such as weights and biases. Each participating
device i € {1,2, .....n;} possesses its own dataset

Dy = {(xi; i ) |
(63)

D; is a dataset belong to client indexed by i. Where x; ;
and y; ; represent the input feature vector (eg., received signal
or channel coefficient) and its corresponding label(channel
state estimated), respectively, and n; is the number of samples
stored locally at device i. j is a sample number within the i
dataset. Each client aims to minimize its local empirical loss
function

Fi(@) = - 3L, 1R (), %2 )) (64)

where F;(w) is the prediction model parameterized by w
and Z}Zl L(Ey(x;i;),yij denotes the local loss criterion,
typically chosen as the mean squared error (MSE) for channel
estimation. The global learning objective is expressed as the
weighted aggregation of all local objectives:

n
F(w) = Iiv=1F;l Fi(w), MNeota = Zliv=1 n;

(65)

The F(w) denotes the overall function or weighted
average. The ng,.q; is a total weight or sum of counts.n; is a
count or weight associated with the i;;, component. Ensuring
the devices with larger local datasets contribute proportionally
to the global optimization. During each communication round
t, each client performs local stochastic gradient descent (SGD)
updates on its dataset as

Wt = wf — AF, (@) (65)
w!*? is the updated value of the i, element and w® is the
current value of the variable at i;;, element. 77 is a step size or
learning rate. Where, 1 > 0 is the learning rate controlling the
update step size and AF;(w?) is the Stochastic gradient descent
(SGD) updates on its dataset as

BF (@) = 5 B7L, V0! (R (X)), ) (66)

With Vw! representing the derivative with respect to
model parameters. Upon completing the local update phase,
each client transmits the updated model weights to the central
server as

send(w!*) — Server
(67)

Ensuring that no private data are shared, only parameters
updates. The server then aggregates the local models using the
federated Averaging (FedAvg) rule,

Wt = JIL, e @t (68)
total
To form a new global model that captures the statistical
diversity across clients. The updated global parameters are
then synchronized back to all clients as
oftt — ' A € {1,2,.....,N} (69)
The A; is an index set or selected components. Allowing
every participant to start the training round from the same

global state. The iterative process continues until convergence
is achieved according to the stopping criterion

||wt+1 _ wt”z <e€
(70)
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Where [|wt+! — a)t||2 denotes the Euclidean norm and

€ >0 is a small constant specifying the desired precision
threshold. € is a small positive threshold. To handle
heterogeneous data distributions and prevent client drift, a
proximal regularization term is incorporated into the local
objective as

F{™ (@) = Fi(w) + £ |lo — of]|
(71)

Where u is a positive coefficient that penalizes the
deviation between the local and global models, thereby
improving stability in non-identically distributed scenarios.
FP™*(w) is the proximal version of F;(w). To further
accelerate convergence, adaptive =~ momentum-based
optimization can be employed through the Federated Adam
variant
(’;7215 =Bimes + (1 =BG Ve =Baveos + (1= Br)g¢

The g, 1is the gradient of the loss function at iteration

t and m, is exponentially weighted moving average (EWMA).

Y, is a EWMA of past squared gradients and 3, 5, are decay
rates for the moving averages. where g, = VF(w") is the
stochastic gradient, B, B, € [0,1) are momentum coefficient
and the small constant € measures stability. For devices
contributing unequally to the global update due to data
imbalance, the aggregation can be refined as

N t+1
t+1 _ Zi=1 Pi®y
o't =2 (73
z:Iiv=1p i )
Where p; = —— denotes the proportional contribution

Ntotal
weight for client i. The convergence behaviour of the

federated optimization after T rounds can be bounded as
E[F (wp)] - F(@") < 2+ 0(p%?) (74)

E[F(w7)] is an expected value of the objective
function. Where F(w™) is the optimal loss value, ¢ is a
constant F(.) and o2 represents the variance of stochastic
gradients. Finally, to improve communication efficiency, the
parameter transmission can be optimized by minimizing the
cumulative deviation between local and global updates.

N t+1 — wt||?

min T, ||w! |t — wt||2 <§ (75)

Where § defines the allowable update bound that controls
the communication budget. Through these iterative procedures,
the federated- based training mechanism ensures that mmwave
channel models are collaboratively trained using distributed
observations while maintaining user privacy and minimizing
the bandwidth usage. The resulting global model effectively
generalizes across diverse propagation environments,
providing robust channel estimation and prediction with
reduced communication cost and enhanced data security.

E. Machine Learning based Robust channel estimation:

The novelty “SCOVEM: Score-Based Generative
Model-Enhanced Support Vector Machine with Bayesian
Optimization for MmWave Fault Diagnosis” is a combine
of SVM, Score based generative model and bayes
optimization” The robustness plays an important role, when
the channel is estimated or predicted. The SVM, Score based
generative model and the Bayes Optimisation to make the
channel estimation more robustness. The Support Vector
Machine (SVM) offer a specific kind of robustness that
makes to estimate the channel in mmWave systems. The
robustness of SVM comes from its core principle of
maximizing the margin. SVM used to directly predict a
continuous channel matrix. Then, they are often applied to
solve “channel estimation problem” as a classification or
“regression task”. The Support Vector Machine algorithm is
use to classify and predict the channel and it make more robust
in channel estimation. For Channel estimation using the
novelty method as “Score-Based Generative Model-Enhanced
Support Vector Machine with ~ Bayesian Optimization for
mmWave channel estimation”. The proposed model integrates
Score based

The overall process can be formulated as:
y=Ah+n (76)

Where y denotes the received pilot signal, A represents
the known sensing matrix, h is the unknown channel vector to
be estimated, and n~CN (0, a21) is additive “Gaussian noise”.

dx = f(x, t)dt + g(t)dw, (77)

The forward stochastic differential equation (SDE)
describes the diffusion process, where f(x,t) is the drift
function, g(t) is the noise schedule, and w, represents
“Brownian motion”.

Sg(x,t) = V,log P.(x) (78)
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Here, sg(x,t) denotes the score function, parameterized
by neural network weights 8, which estimates the gradient of
log-density at time t.

dx = {f(x,t) — g(t)?sy(x, t)dt + g(t)dw* (79)

This reverse time SDE reconstructs samples from the
learned data distribution, enabling the generation of high-
quality synthetic samples used to augment the SVM training.

V, logp(x|y) = V,logp(x) + V. logp(y|x) (80)

The conditional posterior score combines prior knowledge
p(x) and likelihood information p(y|x) to generate channel
estimates consistent with observed data.

V. logp(ylx) = — A (Ax —y) 81)

Assuming a Gaussian likelihood model, this represents the
gradient of the measurement log likelihood used during
posterior sampling.

Xi+1 = X + MieSo (Xpe, tr) + /2152 (82)

Discretised Langevin dynamics for generating channel
samples, where 7, denotes step size and z,~N (0, )

D= {(x]-,y]-)}:_nzl (83)

The generated dataset D augments the original training
data, improving generalization in low SNR conditions.

. 2
min=lwl]” + € XL, (9 + 9)) (84)

This represents the primal optimization of SVM
regression using ¥ insensitive loss and regularization constant
C.

y(x) = X (ec;—<)K (x;,x) + b (85)
The prediction function of SVM where K(x;,x) is the
“kernel function defining the feature space” mapping.
1 2
Laug =3 ||(1)|| + C[ 7i1=1 lE(yi'YI) +Xx
2ty wils (i y)] (86)

This augmented objective integrates real and generated
samples with weighting factor X and sample confidence w;.

2
w; = exp (—=y ||Ax]- - y|| ) 87)

w; is the weight assigned to the j** estimate. x;is the j*"

2
candidate vector. A is the channel matrix. ||Ax]- - y|| is the

squared Euclidean norm. Weight of each synthetic sample
determined by posterior consistency; higher weight implies
better alignment with real measurements.

Roar(@) = - i |y (@) = il (88)

The R,4 (@) is the validation error or residual as a
function of ¢.N,,is the number of validation sample and y; (¢),
predicted or estimated measurement for the i" sample. y;
denotes the actual observed measurement for the
it" sample. The validation risk function used for

hyperparameter tuning.

F(@)~GP(0, Kep (9, 01))
(89)

f(p)is a function of the variable ¢ and GP is Gaussian
process. 0 is the mean function of the Gaussian process.
Kep(@,@,) is the covariance (kernel) function between
¢ and ¢ (input points for the function). Bayesian optimization
models the objective function f(¢) as a gaussian process with
covariance kernel k;p.

ﬂ(‘P*) = K*T(K + 0_731)_1/:' 0—2(()0) = k(‘Pw ‘P*) -
kT (K + 62Dk,
(90)

k(p., @.) represents the covariance of the scalar. [
represents the “identity matrix” and k is the n X n covariance
matrix for training points. The Mean and variance of the GP
posterior are computed for candidate parameter ¢ .

EI(@) = (fmin — 1(9))0(2) + 0(9)T(2) C2))

Expected improvement acquisition function where z =

Lmin—t() m‘:(:p’; ((p), balancing exploration and exploitation.

@41 = argmaxEl (@)
(92)

@41 TEpresents next input point to evaluate the function
and EI (¢) is the expected improvement at input ¢. The
argmax is the value of ¢ that maximizes EI . Next
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hyperparameter ~configuration selected by maximizing 8. Compute score targets s* = V{H}}logp(H})
expected improvement. 9. Update model weights w < w —nVL using
denoising score matching loss
Je,w) = Mt,xo,xt [l |se (xt: t) — th lOg Pt|o(xt|x0)||2]+a,caug 10. End for

93)

J(6,w) is the total loss to optimize model parameters 6.
M x,x, Expectation over of diffusion time step, original data
samples and noisy sample at step t.log Pejo(xe)xo)|12] is a true
score of the perturbation kernel. aLg,, is an optional
augmentation loss weighted by a. Joint objective combing
SGM score matching loss and augmented SVM regression
loss with coupling constant a.

Rpinat = 5 Zow=1 Y (x™) (94)

The hfinq; is a final estimate of the function or quantity
of interest. M is the “Number of Monte carlo” samples and x,,
is the m*" sample from the input distribution. y(x™) is the
function evaluation at sample x™.

Final channel estimate obtained as Monte Carlo average
over M posterior samples from the SGM.

2 [l
]E[||h= hyl| ]s Ebias+0(?ff>+Egen (95)

2

h is a True channel and h, is the estimated channel. (%)
is a variance term, showing decay with effective sample size
Mesp-Analytical error bound of the proposed model, where
Epiqs 1s approximation bias, ngrr =n+x Y;w; is the
“effective number of training samples”, and Eg., denotes the
generative mismatch error. The pseudocode for SCOVEM
hybrid model is presented in Algorithm 3.

Algorithm 3

11. Generate Synthetic channel samples H using reverse SDE.

12. Augment dataset D' = DU{{(p. Hyen }(gen}} for training

13. Train support vector regression (SVR) model on D’

14. Obtain prediction function f (SVM (x)) =X, X+b

15. Perform Bayesian optimization to tune SVM hyper
parameters (C, g, kernel)

16. For each received pilot signal Yy,:

17. Predict Channel estimate Hyreq = f (SVM (Yp,H))

18. Refine prediction using posterior correction:

19. H = Hprea 3" s(Hprear to)

20. Evaluate performance metrics (MSE, BER, spectral
efficiency)

21. Output final robust channel estimate H with optimized
parameters 6.

Hybrid model of SCOVEM

1. Initialize system parameters (Yp, o?, @, Tx,Rx, RIS )
2. Load training dataset D = {X;, H;} from simulation
environment

3. [Initialize SVM parameters (Kernel type, C, )

4. Initialize Score based generative model weights w,.
5. [Initialize Bayesian optimizer with prior GP (0, k).
6. For each training H; in D do
7 Add Gaussian noise o2

F. Score based Generative model

“Score based Generative model” also called as “Score
based Diffusion model” or “Score Based Model”. The Score
Based model then learns the reverse process, which involves
iteratively "denoising" random noise to generate new, realistic
data and make robustness. In score-based model, it involves
Stochasticity as a Regularize and the Agnostic to the Manifold
Hypothesis. The Stochasticity as a Regularize is used to The
continuous insertion and removal of noise in diffusion process
acts as a powerful regularize. It forces the model to learn a
smooth, continuous representation of the data distribution,
rather than simply memorizing the training data. This makes
the model less sensitive to small perturbations or outliers in
the input, a key aspect of robustness.

However, SGM can operate even when this assumption
does not hold. The diffusion process effectively analyses the
data across the entire space, and the model learns to guide
samples back to the areas of high data density. This makes
SGM robust to data distributions in channel estimation and
prediction. The “score based generative model” also known as
“Diffusion probabilistic model”, learns to estimate the score
function of the channel data. It constructs a forward diffusion
process that gradually perturbs the channel data with Gaussian
noise, followed by a learned reverse process that denoises and
reconstructs the original signal distribution.

y=Ah+n (96)
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Where y represents the received pilot signal, A is the
known “measurement matrix”, h is the true channel vector,
and n ~ CNV(0,21) is “complex Gaussian noise”.

qe(xelxo) = N (xe; axo, Utzl)
7

X, is the original data or signal. x; is a noisy version of
data. The q; is the conditional “probability distribution” and
a, is the scaling factor. V' (x;; @;xo,021) is a gaussian
distribution with mean u. The forward diffusion process
gradually corrupts the data x,(true channel) into noisy latent
variables x, by scaling o;and adding Gaussian noise with

variance 2.

dx = f(x,t)dt + g(t)dw,
(98)

dx is an “infinitesimal change” in x and dt is the drift
term. The forward stochastic differential equation describes
the continuous noise adding process, where f(x,t) is drift,
g(t) is diffusion strength, and dw, is “wiener noise”.

sg(x,t) =V, logp,(x)
(99)

The “score function” sy(x,t), parameterized by neural
weights 8, approximates the gradient of the logarithmic
density of the noisy data distribution at time t. The V, is the
gradient with respect to x. p;(x) is the probability density of
x at time t.

dx = [f(x,t) — g(t)?se(x, t)]dt + g(t)dw,
(100)

The reverse time SDE reconstructs clean samples by
iteratively denoising, effectively inverting the diffusion
process using score function.

Xis1 = Xy + Mo (Xi, tre) + ) 2m52
(101)

X} 41 represents sample after one update and ¢, is a Time
or noise level at step K. z; is a random gaussian noise and
2Nz, is a Random perturbation ensuring stochasticity.
Discretised Langevin dynamics used for sampling; 7, Is the
step size and z,~N(o,I) adds stochasticity to improve
coverage of the data distribution.

V, logp(x|y) =V, logp(X) +V, logp(y|x)
(102)

V, is a Gradient with respect to x Conditional posterior
score decomposition; V logp(X) is the conditional
probability and log p(y|x) is the likelihood. The generative
model integrates both prior p(x) and likelihood p(y|x) terms
for channel estimation given pilot signals.

V. logp(ylx) = — A (Ax — y)
(103)

Assuming additive Gaussian noise, this provides the
analytical expression for the likelihood gradient in the
posterior score.

Xo = ¢[xolx] = ait(xt - Utzsa (x¢, 1))
(104)

x, is the predicted clean data and x; noisy data at
time t.a, is a signal scaling coefficient and ¢ is used to
represent function or operator. Posterior mean estimate of the
clean signal given its noisy counterpart, forming the core of
the reverse reconstruction process.

Lscore () = Epx[™ (0)]Ise(xe, ) — Vi logqe (X1 Xo)I|]
(105)

The Li.0re(0) is a Loss function and t is the diffusion
time. X is an original data and X, is a noisy data. E is average
value or mean. Training loss of the SGM using denoising
score matching; X (t) is a time dependent weighting term that

stabilizes learning across noise scales.
_ _ Xt=QtXo
vx lOg qt(xtlxo) - otz

(106)

The score of the Gaussian noise perturbation process used
as the supervised target during training. The Mean squared
Error E,

h = Ep(x|y)lX]
(107)

The h is the condition mean or estimate and X is a random
variable. Final channel estimation obtained as the expectation
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of the posterior samples generated by the reverse process
conditioned on measurements .

P(x) = fpt(xlxo)p(xo)dxo
(108)

p(x,) is the prior distribution of x, and p,(x|x,) is the
forward transition “probability” and dx, integral over all
possible x,. Marginal distribution of noisy data at time ¢;
computed implicit

T(6) = [Elllse(xe, t) — Vs, log q, Cxelxo)[12]dt - (109)

T(6) is a Continuous time score matching loss, integrating
over diffusion time for stable parameter optimization.

xp — D= x¢ + At[f (x, 1) — g(t)?se(x, )] + g()y/ Atz
(110)

Discrete time approximation of the reverse SDE used for
sample generation, implemented in practical reconstruction.

hpye = A+ X (111)

h1, is the estimated value for the m‘" sample and X" is

an original or random component for m** sample. M is a

number of samples and m is a sample index. Each generated

clen sampleX]* is transformed back to the estimated channel
domain using pseudo inverse of the measurement matrix.

_1lym m
h _EZmzlhest

(112)

Monte Carlo averaging across M reconstructed samples
reduces variance in final channel estimate. Var(h) is the
sample variance of h.

1 2
Var(h) = =3 _1|IhZ — hl| (113)

Variance metric quantifying uncertainty in the generative
estimation, important for reliability evaluation.

2
E[||H—h|| ]:Bias2 + var (114)
Bias-variance decomposition of the channel estimation
error; Bias? is the squared distance between the average
estimate and the true value. both components are reduced by
SGM due to denoising regularization and posterior averaging.

2
SNRqs; = 10logy, (M)

115
4H 1] (115)

SNR.s is the effective signal noise ratio and the [lAH| |2is

the signal power and the ||[AH — y||2 is the noise power. A
higher SNR indicates the predicted signal AH closely matches
the observed data y mean low error.

V. EXPERIMENTAL RESULT
A.  Simulation setup

The section proposes channel estimation and prediction
using machine learning as well as it is set up for simulation.
To simulate the proposed research method, the MATLAB R2023a
is used. Table 2 displays the System specification.

Table 2

System specifications

Hardware specifications | Hard disk 512 GB
RAM 16 GB

Software specifications | Simulation tools | MATLAB R2023a
(6N Windows 11(64- bit)
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Zeaxis (m)

mmWave network with 20 UEs ,2- BS , 1-MIMO-BS, 1- RIS,

9 o X-axis (m)

Fig. 5 Mmwave environment

In Fig. 5, The mmwave network which consists of 20 - Fig. 6 Objective function Model
user equipment (UEs), 2 base station (BS), 1-MIMI-BS, 1-
RIS and customized channel environment and parameters. In Fig. 6, To estimate the channel by using Score

based generative model enhanced support vector machine
Bayesian optimization for mmwave fault diagnosis
technique. The x axis taken as kernel scale, Box
constraint and y axis as estimated objective function
value.
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Mean Squared Exvor MSE)
i

0
SNR (dB)

Fig. 7 SNR vs MSE

In Fig. 7, x axis represents SNR and y axis represents
Mean squared error (MSE). The SNR increases, the
received signal becomes clearer and less corrupted by
noise, leading to lower MSE.

i SN Bl —8— SN Afer (HVSE] —8— SR e (SBOM}

'MIESE v SBOM (Enhanced with Difusion Moel)

) 2
User Equipmant (UE1D]

Fig.8 Enhanced with Diffusion Model

In Fig. 8, the channel estimation, User Equipment (UE
ID) and SBR (dB) taken as x and y axis respectively. To
enhance the data distribution, channel estimation and
prediction using score-based diffusion model technique.

Fig. 9 FL-RL UE performance Overview

In Fig. 9, the UE ID and SNR (dB) are taken as x axis and
y axis respectively. The federated learning-based training for
hybrid beamforming, where a Generative Adversarial Network
(GAN)is trained on ray tracing simulation data.

B. Comparative analysis

The proposed method is evaluated by comparing with many
existing methods in the following domains: BER vs. SNR
(dB), SNR (dB) vs. Spectral Efficiency (bits/s/Hz), Number of
RIS elements vs. Transmission Rate (Mbps), Number of RIS
elements vs. Spatial Correlation, SNR (dB) vs. MSE (Mean
Squared Error). Compared to existing method such as
DSSVAA (Directional Scanning Sounding and Virtual
Antenna array) [1], DEMSQP (Data embedded multi-sub band
quasi-perfect) [3] and DDFFCE (Data-driven frequency-flat
cascaded channel estimation) model [13], the proposed model
performed good and accurate.

a. BER vs SNR

The “Bit Error Rate (BER)” is a critical metric used to
evaluate reliability of communication system. The “SNR”
increases, the received signal becomes stronger relative to the
noise, which reduces the probability of symbol errors. At low
SNR values, noise dominates, resulting in higher BER, while
at high SNR helps in selecting optimal modulation schemes
and beamforming strategies.

Table 3

BER Vs SNR (dB)
| X-axis (BER) | Y-axis (SNR (dB))
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Proposed | DSSVAA | DEMSQP
10716 10 35 75
10712 12 39 78
10710 15 44 81
10~° 25 55 85
1072 30 65 90
@ Proposed @ DSSVAA @ DEMSQP

100

| I I II II II
; II .I [ I I
0. 0. 0. 0.00001 0.01
BER

Fig. 10 BER vs SNR (dB)

SNR(dB)
2
2
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In table 3 and Fig. 10 represents the variation of “Bit Error
Rate (BER)” with “SNR” (dB). At a very low BER of 107'¢
(0.0000000000000001), the proposed model requires only 10
dB, while ESPRIT and DEMSQP require 35 dB and 75 dB,
respectively. As the BER increases to 1072 (0.01), the
proposed method reaches 30 dB, whereas DSSVAA and
DEMSQP rise to 65 dB and 90 dB. The proposed model
achieves “higher efficiency”, robustness compared to the
existing DSSVAA and DEMSQP methods.

b. SNR Vs Spectral efficiency

The SNR increases, the receiver can better distinguish
transmitted signal from noise, resulted as higher achievable
data rates and improved spectral efficiency. The relation
between SNR and spectral efficiency is typically nonlinear,
where efficiency increases logarithmically with SNR

Table 4
SNR (dB) vs Spectral efficiency
X-axis (SNR (dB)) Y-axis Spectral efficiency (mbps)

Proposed | DSSVAA | DEMSQP
35 15.5 5.5 1.5
39 16 6 2
45 16.5 7 3

55 18 7.5 4
65 19.5 8.5 4.5

® Proposed @ DSSVAA

15
0
ES] 39 45 55 65

SNR(db)

DEMSQP

Spectral Efficiency(Mbps)

n

Fig. 11 SNR (dB) vs Spectral efficiency (Mbps)

In table (4) and Fig.11 represents the variation of spectral
efficiency (Mbps) with respect to “SNR” in dB. At 35 dB, the
proposed model achieves 15.5 Mbps, outperforming DSSVAA
(5.5 Mbps) and DEMSQP (1.5 Mbps). Finally, the SNR rises
to 65 dB, the proposed method reaches 19.5 Mbps, while
DSSVAA and DEMSQP reaches 8.5 Mbps, respectively. The
proposed method provides higher spectral efficiency and
better performance under improved SNR conditions.

¢. No. of RIS elements Vs Transmission rate (Mbps)

The transmission rate determines how much data is
successfully transmitted per unit time, measured in megabits
per second (Mbps). The number of RIS elements increases,
effective channel gain and SNR also improve, leading to a
higher transmission rate. The relationship can be expressed as:

R = Blog?(1 + SNR/T(N)) (116)
Where:
e R:transmission rate (bits/s or Mbps)
e B:Bandwidth (HZ)

SNR®J(N) = Effective SNR
Table 5
No. of RIS element vs Transmission rate(mbps)
X-axis (No.of. RIS element) Y-axis Transmission rate(mbps)

Proposed | DSSVAA | DDFFCE
10 1 20 90
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20 3 40 92 Proposed | DSSVAA | DDFFCE
50 5 50 96 10 0.6 4 10
70 7 70 98 20 0.7 4.5 12
100 8 90 100 50 0.8 5 14
70 0.9 6 16
100 0.95 9 20
@ Proposed @ DSSVAA DDFFCE
100
80
£
Z W
@ Proposed @ DSSVAA DDFFCE

£
E w0
£
m l
0 - = a | | b
0 50 70

10 E
Number of RIS element

Fig. 12 Number of RIS element vs Transmission Rate (Mbps)

In Table 5 and Fig. 12 illustrate the relationship between
the Number of RIS elements and the Transmission Rate
(MBPs). At 10 elements, the proposed model achieves 1
Mbps, lower than DSSVAA (20 Mbps) and DDFFCE (90
Mbps). Finally, at 100 elements, the proposed model attains 8
Mbps, while DSSVAA and DDFFCE reach 90 Mbps and 100
Mbps, respectively, shoeing that the proposed model achieves
stable growth with efficient use of RIS elements.

d. No. of RIS elements Vs Spatial correlation (Mbps)

The number of RIS elements increases, reflected signals
experience more independent paths, resulting in reduced
spatial correlation and improved channel diversity. This
reduction enhances and handles multipath propagation that
increases effective data transmission rate (Mbps).

anN
p=ea (117)
Where:
e  p: spatial Correlation coefficient
d: Spacing between RIS elements
A: Wavelength of the carrier signal

N: Number of RIS elements

Table 6
No.of. RIS element vs Spatial correlation

X-axis (No.of. RIS element) Y-axis spatial correlation (mbps)

Spatial Correlation(Mbps)

1 20 50 ki 100
Number of RIS clement

Fig. 13 Number of RIS element vs Spatial correlation
(Mbps)

In table (6) and Fig.13 represents the number of RIS
elements increase, spatial correlation improves for all
models, indicating better signal alignment and system
performance. Initially, at 10 elements the proposed model
records a correlation of 0.6 Mbps, much lower than
DSSVAA (4 Mbps) and DDFFCE (10 Mbps). Finally, the
number of increases to 100, the proposed method
achieves 0.95 Mbps, showing stable and controlled
correlation compared to DSSVAA (9 Mbps) and
DDFFCE (20 Mbps). The proposed model maintains the
low spatial correlation, ensuring efficient signal reflection
and improved communication reliability.

e. SNR vs Mean Squared Error

Mean Squared Error (MSE) measures “the average
squared difference between the estimated and the actual signal
values. The SNR quantifies the strength of the desired signal
compared to background noise. The SNR increases, the
received signal becomes clearer and less corrupted by noise,
leading to lower MSE.

Table 7
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SNR (dB) vs Mean Squared Error (MSE)

X-axis (SNR (dB)) Y-axis Mean Squared Error (MSE)
Proposed DSSVAA DDFFCE
40 1.75x 107° | 2.00x 10° | 3.15%x 107°
45 1.85%x 107° | 2.75x107° | 3.20x 10°°
50 1.89 X 107° | 2.85x107° | 3.25x 10°°
55 1.90 X 107° | 2.89 x 10~° 3.30x 107°
60 1.98x107° | 295x107° | 4.00x 10°°

@ Propused @ DSSVAA DDFFCE
DOU00

= 0.00000
g 000000
= .

000000

(MSE)

quared E

000000 W
SNR(dB)

Fig. 14 SNR (dB)vs Mean Squared Error (MSE)

In table (7) and Fig. 14 represent the variation of Mean
Squared Error (MSE) with respect to SNR (dB). In 40 dB, the
model attains an MSE of 1.75x10¢ (0.00000175),
outperforming DSSVAA as 1x10* (0.00000200) and
DDFFCE as 1x107* (0.00000315). As the SNR increases to 60
dB, the method maintains a low MSE of 1.98x10™*
(0.00000198), while DSSVAA and DDFFCE exhibit higher
errors of 1x107 (0.00000295) and 1x107' (0.00000400),
respectively. This demonstrates that the proposed model
provides superior estimation accuracy, better noise resistance,
and more stable performance under varying SNR conditions
compared to the existing methods

C. Research Summary

Initially we design the mmWave network which consists
of 20- User Equipment (UEs), 2- Base stations (BS), 1-
MIMO-BS, 1- RIS and customized channel environment and
parameters. Next, we perform data preprocessing to reduce
noise and enhance accuracy by applying high-SNR MIMO-
MRC modeling technique, clustering algorithms, and filtering
techniques to enable efficient feature extraction and improved

data quality. Then, we perform Fast Alignment to quickly
identify strong near-field regions, then apply HCSSP
(Hierarchical Compressed Sensing with Sub-Partitioning)
technique on those sub-regions to recover sparse channel
paths. We perform (FL) based training for “hybrid
beamforming”, where a Generative Adversarial Network
(GAN) is trained on raytracing (RT) simulation data, and the
base station (BS) aggregates user gradients in a decentralized
manner without accessing raw data. Next, we estimate the
channel by using SCOVEM (Score-Based Generative Model-
Enhanced Support Vector Machine with Bayesian
Optimization for mmWave Fault Diagnosis) technique. Then,
we enhance the data distribution, channel estimation and
prediction by using the Score based Diffusion model
technique. Finally, we plot performance metrics such as BER
vs. SNR (dB), SNR (dB) vs. Spectral Efficiency (bits/s/Hz),
Number of RIS elements vs. Transmission Rate (Mbps),
Number of RIS elements vs. Spatial Correlation and SNR
(dB) vs. MSE (Mean Squared Error.

VI. CONCLUSION

The proposed paper presents an efficient machine learning
based approach for mmwave channel estimation and
prediction. The proposed model integrates MIMO-MRC
preprocessing, federated learning, and score based generative
model for robustness. The use of MIMO-MRC resulted in
high signal reliability under noisy condition. By incorporating
the Coordinated Multiple Point (CoMP) model, signal
detection between transmitter and receiver. The federated
learning framework improved training efficiency while
preserving data security. The hierarchical compressed sensing
with spatio- temporal Sub partitioning ensured accurate near
and far filed modelling. The Score based generative model
enhanced noise resilience and channel estimation accuracy.
The model achieved higher transmission rates and lower
spatial correlation through optimized RIS integration. Overall,
the proposed hybrid system achieved superior robustness and
scalability for mmwave communication. In future, the work
can be extended to real time mmwave environments with
dynamic user mobility. Further optimization using deep
reinforcement learning can enhance adaptive beamforming
and prediction accuracy. Integration with 6G intelligent
reflecting surfaces and edge computing will enable ultra-
reliable, low latency communication.
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